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1. EXECUTIVE SUMMARY

The objective of this task was to study the origin of the phenomena

that contribut, _. to the overall noise in photonic phased array systems. In

particular, the task included the study and the characterization of the

semiconductor laser low frequency noise and its 1/f behavior.

The approach adopted for this study included three parts. In the

first, a comprehensive study of the effect of phase noise from lasers and

other sources on photonic phased array systems was considered. This study

considered the influence of additive, as well as multiplicative noise in

photonic systems, and resulted in the important conclusion that the effect

of uncorrelated multiplicative phase noise in a phased array system is

dimblished as the number of array elements is increased. The study

further revealed that, by contrast, the additive phase noise of the array does

not diminish with the number of elements. Thus for an array with a large

number of elements_ the overall signal-to-noise ratio will be independent of

the size of the array. Results of this segments of the study pointed to the

significance of including both the additive and multiplicativc noise sources

in system designs of photonic phased array antennas.

In the second segment, the influence of modulatitm on the noise of

semiconductor lasers was experimenlally determined. In particular, the

dependence of the low-frequency noiseon injection-current modulation in

external cavity semiconductor lasers was examined. This noise can limit the

performance of photonic sensors and phased array antenna systems, and

can reduce the sensitivity of photonic anti fiberoptic sensors.
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The approachfollowed for the studyof the 1/f noise in the spectrum

of semiconductorlaserswas theconsequenceof theneedto examinethe

noisefor a singlemodelaser,basedon the findings of the secondpart of

the study. This approachincluded a modelof the laserasa noise-driven

resonantamplifier. A dynamic partial wave modeldevisedfor this system

was thenusedto obtain the spectrumof theoutput field of the laser. This

model producedinterestingand suggestiveresults,including a power-

independentterm in theSchawlow-Townesformula for the iinewidth of the

semiconductorlaser,resulting from the multiplicative noisedue to electron

density fluctuations in the gain medium. The model, however, failed to

directly account for the 1/f behavior in the spectrum as a consequence of

the laser action.

-3-
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2. INTRODUCTION

Noise is typically the limiting factor in the performance of photonic

RF systems. The influence of noise in the stability of fiber optic

distribution links, previously studied in detail at JPL, pointed to the need

for a comp-rehensive examination of the influence of the phase noise of

semiconductor lasers in photonic multi-element arrays. The

Semiconductor Laser Low Frequency Noise Characterization task was

aimed at addre_;sing this problem.

The approach used in this task was devised to systematically consider

the influence of low frequency noise of semiconductor lasers, both

experimentally and analytically, and then develop a model for the origin of

the 1/f noise in the laser spectrum. In this final report results of the study

will be presented. The presentation is divided in three segments. In the

first part the effect of the phase noise on the performance of phasccl arrays

is analyzed. In the second part, the influence of modulation on the laser

noise is reviewed, and experimental results are presented. The third

segment includes the presentation of a model for ',he noise of the

semiconductor lasers which yields the influence of the multiplicative noise

on the linewidth manifested a,; an additional tern-, 'o the Schawlow-Townes

formula.

While the study did not reveal the origin t_f I/f noise: in the spectrum

of semicc_nduc;tor lasers, it laid important groundwork for future

examination of this topic, which is difficult to analytically track, yet is of

fundamental imp_rtance in the performa_.ce of photonic ba,_ed RF systems.

-4-



3 Phase Noise in Photonic rf Arrays

The function of rf photonic phased arrays is fundamentally based on _he

phase control of individual elements. Thus any noise due to individual com-

ponents in the system limit the system performance. Basically the total

noise: in. tile ,_ystem is determined by the combination of both additive and

mul_iplica_.iw_ components. The additive term is produced by a variety of

sources including the thermal noise of ,-lissipative (:lements, the shot noise of

the photodetectors, and the laser re!ative intensity noise (RIN). The additive

term is readily measured and. in most instances_ is easy to calculate; so i_s

influence on the performance of the system is generally straightforward. The

axidmve noise, is al_'ays present in a system, and can be determined indepen-

dent of the presence of any signal. The multiplicative noi_ originates from

low frequency gain and path length instabilities, and is only 2resent when

the _ignal propagates in the system. This terra usually has a 1/f a behavior

with frequ.e_cy, and tiltm is typically dominant in frequency regimes close to

the carrier.

Our model for the additive and multiplicative noise terms deals with the

uncorrclat,ed com_,onen._. The model is given in detail in Appendix I ,_nd

e.ssel_tially generalize!_ ti_e case of noise for a single element with unity gain

to the ca_ of a pha_ed array .'.ith M elements. The analysis leads to the

conclu,,;ion that for uncorr_.lated white Gaussian noise, the SNR for art M

clement array is gi.ven by,



(I E0 Ib
S:VR -- _',,l_ + (I N(t) I=)' (1)

M

where SNR is the signal-.to-noise ratio of the M element array, Eo is the

amplitude of the input, signal. 6(_(t) is the multiplicative I)haae noise, and

N(t) is t,he additive noise terln. In the above expression 0 represent time

averaging.

From the above equation it is readily concluded that the additive term

in the SNR remains conslant, independent of the. number of elements in the

array. The multiplicative term, by contrast, does depend on the number of

arrays, and is reduced by factor Nil. As M increases, the multiplicative noise

term reducers to a negligible fac.tor, a,nd the rtoi_ performance of the _wr_W

is determined by the a_tditive noise contribution, only.

As ment,ioned above, lair RIN is a muh,iplicative noise _,_urce. Thus

in designing phot,onic rf _m'ays the _.'.seof the above equation permits the

determination of the, type of the laser best suited for t;he particular system.

Since the RIN for the inj_xtion current mr_lulated lasers is generally much

lar_;er than t hat of the solid state YAG lasers, the combination of the additive

mfi,_e lev_l and the number of elements required will dictate which type will

produce tb..*,highest performance in a given array.



4 Influence of Modulation on Semiconduc-

tor Laser Noise

In this task, the dependence of the low frequency intensity noise on injection-

current modulation was studied. The results of an extensive hterature search

were employed to determine the most advantageous manner in which to pro-

ceed. It ha_ been shown previously that low frequency intensity noise (0 -

I GHz) in injection modulated semiconductor lasers is upconverted to the

vicinity of an RF modulation signal. The heart of the problem, therefore, lies

in determining the origin of the low frcqnency fluctuations in the laser dmde,

and how the. low frequency noise is affect.ed by injection current, modulation.

Two competing views exist regarding the origin of the low frequency

fluctuations in semiconductor lasers. One camp contends that low frequency

intensity fluctuations are due to trapping of carriers in the sem£conduc'cor

medium with a 1/f power law frequency spectrum, while the other view holds

that competition between longitu,'linal modes of the laser diode causes an

enhancement of low frequent ,' ,ctuations. The initial approach we adopted

wa,,3 to control the _mount of coupling between longitudina[ modes of the

laser, and to observe the effect on the low-frequency fluctuations and close-

to-carrier RF phase noise.

To inve,qtigatc the effects of mod_, coupling, an exterlml cavity semicon-

ductor laser diode was constructed. The external cavity has the desirable

effect of reducing tbe longitudinal mode frequency sepsr_ttion from approxi-

mately 450 Gltz to 1 GHz, within the range of injection curret_t modulation



frequencies. Then. the mode-coupling can be affected by i_jection curren_

modulation at appropriate frequencies corresponding to the round trip light

time of the cavity and its harmonies.

Testing of the external cavity semiconductor laser was performed under

various conditions of bias current and modulation. Preliminary results em-

ploying mod_locking with a strong sinu_idal modulation at 1 GlIz calmed

a reduction in the low frequency intensi_y noise of tile laser diode in ex-

ternal cavity by approximately 10 dB. The cause of the noise reduction is

presumed to be the reduction of competition between the lasing modes of

the laser when mode-locked. However, an unexpected result was obtained

when the 1/2 sul>-harmonic of the mode-locking frequency (i.e., 500 MHz)

was employed: the low frequency intensity noise was reduced by axtother 10

dB ibr frequencies above 5 kttz. These results were presented at the Third

Annual DAIq PA Sympo_;ium on Photonics Systems for Antenna Applications

(PSAA-III), on January 20th 1994 in Mrmterey California, in a paper enti-

tled: "influence of Modulation on Noise m Semiconductor Lasers," by R.T.

Logan ,lr. and L. Maleki.

5 Multiplicative Noise and Laser Linewidth

A theoretical model for the mode-competitior_ noise r_:<tuction in a multi-

mode h_ser was developed ar,_ computer simulation,_ were performed. The,

model is based on a Fabry-Perot, cavity c'm_tainiILg ;_ q_edium with a time-

varying index of refraction, h, the simulation, {h(' ('enter frequency and

amplitude of the, d,m_inant mode was lra_ ke,t t,)e-,lilmll;e the frequency and
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intensity fluctuati(m power spectra. "the computer random-number genera-

tor wa.s used to simulate index of refraction variations with a whit,e power-

._pectral-density; the model nppeared to generate 1/f a -type noi,_e similar to

that observed ill the laser, and proportional to the noise etmplit, ude.

This in.itial theoretical resu]t served a.s tentative confirmation of the mode-

competition hypothe:;is. Theoretically, then, the 1/f noise should disappear

completely if mode- competition wa_ completely suppressed by perfect mode-

locking. It s|:ould al.,_o disappear in the c_.se of a purely single-mode laser.

However, further searching of the literature, m_d experience revealed that a

residual level, of 1/f noise is often observed even in single-mode distributed-

feedback laser diodes. The computer model was applied to the single-mode

le.ser d_ode again, incorporating index of refraction variations with a wb.ite

power-_pectral- density. Again, 1/f-type frequency and intensity fluctuations

were observed in the simulated output.

To verify the computer result, an analytic solution was derived for the

problem of the fluctuations of the transrni_sion of a resonant cavity due to

variations in th.e feedback parameters. The, analytic model is an extension

of a linear feedback system model that includes the efft_ts of time-variation

of the feedb_ck components. In this linear model, the tr_msmitted wave at

any time instant is comprisccl of a summation of "partial waves" that h&ve

existed in the cavity for various lengths of time. In th,., c_L_e of no feedback

flucr, uations_ the partial w0.ve_ may be summed analytically, m_d the familiar

Fabry-Peror cavity result i_ obtained. As the Q of the cavity ts increased,

triore partial wav(_s arf' st,_rerl in the cavity However, when the feedback

l.,ar;mv_ter i,, fluetuatinl_, the .ttti}ut wave is a summer|tin of many f_arti_,l

........ ii
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waves that have ,_ampled the feedback fluctuations over increasing leng_.hs of

time. It is seen through this analysis that in a high-Q cavity, the fluctuations

of the cavity axe amplified by the fact that many partial waves make up the

output wave at. any instant, and ea_:h partial wave carries a history of the

cavity fluctuat.ions with it.

The analytic model re_;ults serve to confirm and explain tile computer sim-

ulation results. The fluct uations of the output wave duc to refractive index

variations with white power spectral density acquire a 1/f _ power spectral

density at frequencies above the -3 dB point of the cavity, but remain white

at frequencies within the cavity bandwidth. This r._ise enhancement effect

may explain why high-Q cavities typically have relatively poor long- term

stability.

The linear model is not L.ufficient to model an oscillator: such as a ].user.

However, it provides interesting new insights into the effects of noise in res-

onators _Lnd resonant amplifiers. In the next phase of work, the time-varying

feedback and partial wave model was incorporated into a non-linear analysis

of V,hc re_nant cavity above the oscillation threshold. This for:_alism en-

tailed modeling the laser as a noise driven resonant optical amplifier that has

random gain and phase fluctuations. The inodel yields an additional power

independent term in the Schawh w-Tow'nes expres._ion for the linewidth of

the laser. As the power is increased, the .aodel predicts a re-broadening of

the lirtewidth, aq generally observed in the ca,_e of semiconductor lasers.

The ,_tudy also included an analyst, of el.ec_:ron den:_ity fluctuations in

the laser gain mtxtium from which the spectral power denqity of noise due

to these fltlctuation:, waa obtained. Finally, the results were used to obtt_in

10



an estimate of the mini.mum linewidth of the _miconductor laser.

This segment of the work is the basis for the dis,_ertation of R. T. Logan,

which will be submitted in the future in .cartial fulfillment for the Ph. D. de-

gree in Electrical Engineering, Electro-Physics at the University of $_)uthern

California. The portioi_ of the dissertation supported in the task is presented

in Appendix II.
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Proceedings of SPIE O/E Lase '9_, Optoelectronlc Signal Processing for Phased-
Array Antennas IV, 26-27 3anuary 1994, Los Angeles, CA.

EFFECTS OF PHASE NOISE

FROM LASERS AND OTHER SOURCES

ON PHOTONIC RF PHASED-ARRAYS

Ronald T. Logan lr. and Ltlte Maleki

JetProptflsionLaboratory,CaliforniaInstituteofTechnology
4800 Oak Grove Drive,Pasadena,California91109

ABSTRACT

The bea.m patlern of a linear phased-array antenna system employing a photonic
feed network is axtalyzecl using a model for the individual feed element noise
including both additive and multiplicative equivalent noise generators. It is

shown that uncorrelated multiplicative noise power of the individual feeds is
reduced by a factor of N in the output of an N-element iinear array. However, the
uncorrelated additive noise of the individual feed paths is not mit;_gated, and
therefore will determine the minimum noi,__ floor of a large phased-array
antenna.

1. INTRODUCTION

In phased-array antennas, the beam pattern depends critically on the phase
control of the signals at the individual anterma elements. The ability to feed and
adjust the phase of the microwave signals to the _ndividual radiating elements
uf_g optical fiber and photonic components offers-obvious advantages in size,
weight, mechanical flexibility, and cross-talk, compared to metallic waveguicies
and phase-shifters Various phased-array antenna system architectures with
photonic feed networks have been proposed, however, the issues of phase
stability and signal purity are not typically addressed in these proposals.

Therefore, determination of the acceptable phase noise contribution of the
individual active feed components has been problematic. In this paper, the
general factors contributing to the phase stability of an array feed network are

outlined, with particular attention paid to the type of noise encountered in
photonic feed elements. It is shown that the analysis of array phase stability must
consider both additive and multiplicative noise, generation processes, and tl_at

the additive noise of the active feed components will limit the phase slability of a
large phased-array.

2. PHASED-ARRAY SYSTEM MODEL

The general architecture of a phased-array antenna system comprised of M
elements is depicted schematically in Figure 1. In this analysis, the phase noise
contribution due to the array feed and antenna elements only is calculated. The

A-2



effects of the source phase noise will be common to all elements, and may be
_reated in the usual manner for a single antenna element.

Main Lobe

_ N Combined

_ Output

N_: Additive Noise Generators

_: MultIplicative Noise Generators

Figure 1. Noise Sources in M-Element Phased-Array Feed System

The feed system is driven by a common source oscillator whose power output is
divided M ways. The phase delays required to point the antenna beam are

generated in the separate feeds. To study the effect of noise on the elements, we
assume a simple: case in this model: the signals acquire equal delays in the feeds,
and are then recombined in a second M-way power combiner. Thus, the output

signal amplitude is scaled to be equal to the input signal amplitude, to facilitate
comparison between a single-element antenna, system and an array.

3. NOISE PROPERTIES OF PHOTONIC FEEDS

The photonic feed elements contain active components such as laser diodes,
photodiodes, and amplifiers. The phase noise contribution of a microwave fiber

optic feed system is therefore comprised o¢ an additive noise term and a
multipltcative noise term. Laser relative intensity noise (RIN), shot noise, and
thermal (Johnson) noise are additive noise sources which are present at all times
independent of signal level. Low frequency gain or path-length instabilities that
modulate the microwave signal amplitude and phase are multiplicative noise

sources that are only observed when a signal is present. As shown in Figure 2,
additive noise usually determines the noise floor at higher offsets from the carrier

frequency, but multiplicative r_oise often has a l/f a power law characteristic,

1<a<2, so is typically dominant close to the: microwave carrier frequency [1].

,_ ., I I



DSB PHASE
NOISE

Id_/l-bl

.70

-I(:X} _ MultiplicativeNoise(I/fl

-130 -_ jdditive Noise

I I I I I
I 2 3 4 5

LOC,(OFFSE'rFREQ_ENCY_

Figure 2. Typ/mi Phase Noise of Phoeonic Feed System at 10 CJ-{z

Additive noise .sourcesdue to thermal and shot processes or laserRIN are

independent random processes and thereforecar,.be assumed uncorrelated

between thefeed.elements.Multipllcativenoisemay or may not be uncorrelated

between elements,d_pending on itsorigin.For example, thermal expansion or

vibrationof allthe opticalfibersin the feed network may produce a phase

modulation thatiscommon toallelements,whereas, laseror amplifier-induced

i/f gain fluctuationswill be uncorrelated betx:'=.enelements. Noise that is

core.amon toall the elements may be referred to the sourc- scillatorand treated
as ifthearray were a tingleelement.In the analysisthatfollows,allof the noise

sources in the individualfeed elements are assumed to arisefrom independent

random processes,so car be treatedas uncorrelatedsources.

Itisnoted that the multiplicativenoise isnot detectableby a standard noise

figuremeasurement in the microwave signal frequency baacl.In fact,itis

difficultin pract/.cetopred_.cttheamount ofmultiplicativenoisein an amplifier

or laserdiode,because the noiselevelmay itselfbe a functionof the modulation

signal frequency or amplitude. Therefore, the amount of multiplicative phase

noise is usually determined empirically.

4. ANALYSIS

We now proceed to calculate the effect of the noise added by the feed elements
on the total array performance. Consider first a unity gain single feed element

consisting of a fiber optic link and electronic amplifiers, with a mlcrowave input

signal E_.(t)= Eoe_'t of constant amplitude E. at microwave frequency coo. The

output signal ampli-.de for a single feed element may be written

E,,,(t)d" = E,e_*"e j_") + N '(t) Cl)

where N'(t) represents an additive Gaussian noise proo?ss with a white power

spectral density from dc to well above O0o,and &p(r) is a small multiplicative

phase noise: term. The multiplicative boise term can, in general, be complex and

thus also represent gain fluctuations. Factoring out the siz_usoidal va ria tion at coo

yields the slow time-variation of the output field aro,Jnd the microwaw: carrier

A-Z,



E_(t) = Eoej_(" + N'(t)e "i*''

= Eod_<" + N(t}
(2)

Limiting the analysis to a band of frequencie_ ,$w in width around ca°, the

additive noise term can be written as a random phasor:

N(t) = N'(t)e "j'_''= &'(t)+jSi(t), where 18i(t_=l&(t_, and are assumed to be

independent Gaussian noise processes with white power spectral density from

dc to <_o_/ 2. Note that as the input signal amplitude Eo is decreased to zero in

Equation (2), the multiplicative noise term vanishes, but the additive noise term

N(t) is unchanged

The total array noise is now calculated by using the M individual feed element
expressions from Equation (2) in the standard calculation [2] of the array output

field. For a linear array at a steering angle O, the field distribution in the far field

of the array as a function of observation angle e may be expressed as

M-1 E i_,m m(,,oQ, #-#>

Figure 3 is the calculated radiation pattern for a linear array of ten antennas vs.

observation angle F)when the steering angle 0 = 0.

Relative

Intensity,
dB

Figure 3.

-10

-ZO -

-30 -

-40 i
0 50

I i

1O0 150

Observation Angle, 0 (degrees)

Calculated radiation pattern vs. observation angle for a 10-element linear array

We wish to investigate the magnitude of the amplitude and phase fluctuations of
the main h)be w?rsus the number of elements in the array. If the noise sources in

the feeds are uncorrelated, the statistics of the time-variation of the amplitude

and phase of the main-lobe peak will be independent of the steering angle #.

,%-5
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Therefore, for the purposes of this noise analys_s, the array can be modeled
simply as M eql al-length feed systems sandwiched between two back-to-back
ideal M-way power splitters, as depicted in Figure 1. Now, the output field
amplitude is equal to the input field amplitude, independent of the number of
elements M.

At the main lobe peak, _cosO = 0, and the signal amplitL_de at the output of the
M-way coupler in Figure 1 corresponds to the main lobe peak amplitude of the

antenna pattern, divided by ._. For smaJl-angle _hase noise 8_(t) << 1 radian,

the time variation of the output field can be written

First consider the output of an "array" comprised of only one feed element with

unity gain. In the above equation, this corresponds to the case of M=I. The
output field is then given by

= E. + j (t)Eo + N(t). (5)
which is just the sa_._z as the expression for a single feed given earlier in Equation
(2), as required. The signal and noise power are proportional to the time-average
of the ,,_uared-magnitude of the output voltage:

U(N .)+(N jg¢rE.),(NN')
-where the angle-brackets ( ) denote the time-average of the enclosed quantity,
and the explicit time--dependence of the random functio_ has been dropped for
dLar[ty. For independent zero-mean noise processes, the time-average of products
of the constant and randor, terms are zero, because we have assumed zero-mean

random noise processes. Also, the average of the product of two uncorrelated
I . ,p

terms, such as (N(18 0) ), is zero. But the time-average of the square of any signal

or noise term is non-zero. "l'hu.-_,the ratio of signal to noise power (SNR) for one
feed is

_ IE;J')
(7)

Similarly, for the case of M parallel feeds with independent equal-amplitude

multiplJcative and additive noise sources, the output field is given by

(8)

= E. +Ez(J_¢°(t)M • N_(I)



The individual powers of equal-amplitude, independent (therefore uncon elated)

noise sources may be added linearly. Thus, the equivalent noise voltage due to

the sum of M uncorrela_ted equal-amplitude noise sources is just "v_ times the
amplitude of a single noise source. Since all cross-terms between uncorrelated

noise sources aver23e to zero, we can write the output field for an M-element

array in terms of a single multiplicative noise source 8q_(t) and a single additive
noise source N(t)

Eo.(O= E. + _ + N(t). (9)
",/M

Now, the ratio of signal to noise power in the combined output of an M-element
array is

M
The multiplicative noise power is thus mitigated by a factor of M in the
combined output of an M-element array, whereas the signal power and additive

noise power are unchanged from the single-element case. Figure 4 illustrates
these results for an array of ten elements compared to a single element.

DSB PHASE
NOISE

[dBelHzl
'°L..,/" Single-element rnultiplicatlve rtoi_ (I I0

-100

"'... ,,. ,I 0-e lement array noise
" D,,B_

4---- --4-
0 t 2 3 4 5

LOQOFI_ET FREQUENCY)

Figure 4. Comparison of Sinsle-element and 10-element Phase Noi_

The dose-to-carrier 1/fot multiplicative noise of the combined array output is
reduced by 10 dB compared to the noise of an individual element. The wb.ite

additive noise power further from the carrier is unchanged from the single-

element case. This behavior is analogous to the improved frequency stability
obtained from an ensemble of oscillators, compared to the stability of a single
oscillator. This property may therefore make phased-array antennas more

desirable than single-element antennas for applications in which high levels of
long-term phase stability are required. Alternatively, this property relaxes the
requirements on multipllcattve phase noise for the elements of a large phase
array, it is emphasized that the additive noise requirements are not relaxed,
howcwer.

I



5. SUMMARY

It was shown that as the number of array elements M is increased, the effect of

uncorrelated multiplicative phase noise of the feed elements on the total array
stability is diminished. However, the uncorrelated additive noise of the feed
elements is not diminished, so that the signal-to-noise ratio becomes independent
of array size for large enough M. It is therefore important to quantify both the
additive and multiplicative noise of the feed elements to correctly predict the
total array phase stability.
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Abstract

A general formalmm is developed for an_dyzing the output field

fluctuations of a resonant optical ampli_er that has random gain and

phaae fluc'tuations by a modification of the partial wave model. The

partial wave rnodel provides an intuitive physical picture for the effect

of muttiplicative noise in the optical resonant smplifler. Then, by mod-

eLling a lama" u a melee-driven resonant optical amplifier, it is shown

that maltiplicative noise gcmerat_s an additional power-independent

term in the $chawlow-Townea formula for the liuewidth of the fraser.

and a re-broadening of the linewidth at high output power levels, u is

typically observed in single.mode semiconductor luers st high power

levels. Time-varying complex gain constitutea a muRiplic, a_ve gain

and phMe noise source that is trmmformed to the output field in a

different way from addih,_e noise sources, such _ spontsneouJ emis-

sion, The formalism developed allows calculstion of the tranamitted

field {,_wer spectra of amplitude sad phue fluctuations due to multi-

plicative heine. It is shown that the effect, of muttiplicattve noise on

the trsnsmitted c_tical field is enhanced u the net round-trip gain in

the re.mater is fncreMed, so that the multiplicative noise ultimately

determmm the minimum linewidth for the reaonaat amplifier in the

high-g_n limit. A detailed analysis of electron density fluctuations in

a semiconductor luer gain medium is _ performed, from which the

power t_p_tral denJivy of multiplicative pha_ noise due _o electron

numbet-denaity fluctuatiozm in the gain medium is ohte.ined. This re-

sult is t,hen used in the m,,Itiplicative laser noise model t_ obtain sn

estimate of Zh¢ minimum linewidth of a acmlconductor laser. Although

I3-/4
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themultiplicativenoise analysis i_ applied to a resonant optical ampli-

fier, the formaJism is general and should be applicable to the analysis

of other types of feedback systen_s perturbed by multiplicative noise.
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1 Introduction and Overview

A formalism is developed for analyzing the output field fluctuations of a

re_sonant optical amplifier with a time-varying complex gain medium, by a

modified partial-wave model. A linear model of a laser a.s a noise-driven rcs-

onaz_t optical amplifier is then modified using the results of the time-varying

partial wave analysis. This new laser model provides an intuit ire picture of a

mechanism fi_r power-independent Iinewidth and linewidth rebroadening in

semiconductor lasers.

In a resonant amplifier, time-varying phase and gain constitute mult_-

plicative noise sources who_ effects are transformed to the output field in a

different way from ad&t,we noise .sources, which are typically treated a.s axl-

ditional inputs to the system. The inclusion of multiplicative gain and phase

fluctuations in a. partial-wave analysis of an optical resonant amplifier is the

principal novelty of this work. The partial wave model provides a simple

physical picture for the effect of multiplicative noise in the optical re_,;onant.

amplifier. The resonant amplifier is modeled as a delay-type, feedback system

(Figure 1) with input., output, and net round-trip loop gain less than unity,

a.s shown in Figure 1. The output fiekt at any time instant is compri:_ed as

a ._um of partial waves; the "oldest" parti_,l waves have travelled more times

around the loop, so that the "memory" of the ca_ity extends further back ill

time. When no multiplicative noise is present, the width of the cavity reso-

nance peak, decreases as the net gain, and hence the cavity memory time, is

increa._ed. However. in the pr,_sence of nmltiplicative tmise, the older partial

wave:s a,x:umulat.e progressiwly larger random phase fluctuations, leading to



increasing output field fluctuations. For high ermugh net round-trip gain,

the multiplicative noise-induced fluctuatiom_ will dominate the output field

fluctuations, and the lmewidth will not derease with further increases in net

gain. EventuaLly, as., the gain is increased further, the later partial waves

accumulate so much phase that they begin to destructively interfere with

the earlier partial waves, leading to large output fluctuations, and increasing

l_inewidth.

By viewing the laser a_ a noise-driven re,. mant amplifier, and including

the re.=.ults of the partial-waw; analysis, a, model is obtained for the behavior

of the laser with multiplicative noise as the net round-trip gain is varied. It

is shown that multiplicative noise leads to an ad,tition,d power-independent

regime in the Schawlow-Townes formula for the Iinewidth of a la.se_ at. in-

termediate power levels, followed by linewidth rebroadening.as the power is

increased further. Prom this result, an estimated value of 120 Hz for the

minimum power-ixtdcpendent linewidth of _t typical single-mode DFB sen,i-

con,'luctor laser due to electron attmber-density fluctuations is c)bt.aiaed.

Multiplicative noise arises in an optical feedb_k system when a multi-

plicativc factor affecting the field, such as gain _r rGund-trip pha_e, fluctuates

in time. Additive noise arises from pho_.ons which are added randomly to

the field, such as by spontaneous em.ission. In addition to the fundamen-

tal addtive noi_e due to spontarteous emission, sources of multiplicativc gairt

und phase fll_ctustion will always be present in the components of a laser

system at, som,,_ level. It h_ been shown [12! that statistical fluctuatiorts in

temperature and density fan have significant, effect on the ()ptieai phase of

a wave: passing through aa (_ptical fiber at. a (:_stant temperature T For
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e×amp]e,in afiberlaser,thissourceof fluctuation constitutes a fundamentrfl

source of raultiplicative phase noise that arises from the same thermodyamic

considerations responsible for the unavoidable Johnson noise in electronic

components, and is a basic con_quence of tile Fluctuation-Dissipation The-

orem [16]. In other laser systems, the net gain a_d optical length of the laser

cavity can fluctuate due to dye-stream width fluctuations, mirror vibrations.

pump power fluctu,_tions: or other technical factors. In typical laser systems,

it is these technical sources of multiplicative noise that determine the actual

observed li.newidth [1], and not funda'nental additive quantum noi.,_, due to

',pontaneous emission, a.s predicted by the well-known moditied Schawlow-

Townes formula [191, [211.

The Schawlow-Townes formula for l_¢er l].newidth predicts an inverse de-

pendence on the output power given a_

hv .¥_

where 6Vc is the "cold cavity" linewidth determined by the losses, h is

Pl_nck'_ constant, v is the oscillation frequency, P is the output pov;er.

and N2, Nl are _he populations of the upper and lower states of the atomic

transition responsible for the optical gain. For large-scale g_ts la.,_ers with

high-reflectivity mirrors, equation (1) predicts linewidths or_ the order of

several hertz for output powers in the milliwatt range. In real lasers, the

observed lmewidth typically sew,ral orders of m_gnitude larger than this

quaa_,um lincwidth prediction, due t,o technical .,,ource_ t_f lioise.

A notable e×ccption is the .,_mdcon¢l_ct._,r last,r. The combined effects

Is-8
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of large output coupling (i.e., low Q cavity) and amplitude-phase coupling

through the carrier de__,sity [2]. [3] yield a predicted fundamental quantum

finewidth in the kHz to 160 MHz range for typical power levels. The pre-

diction of the appropriately modified linewidth equation [2] for typical facet

reflect, ivity of 32 percent yields an estimated linewidth of approximately 30

MHz at a power level of 10 milliwatts, and experiments are typically in good

agreement with theory for lower power levels. However, a power-independent

linewidth of several MHz [11], !22] and linewidth rebroadening [6], [5] in

single-mode _miconductor lasers is typically observed at high output power,

which is not. predicted by the modified Schawlow-Townes relation. The excess

linewidth is detrimental to applications requiring a high degree of coherence,

such _s atomic spectroscopy and (_herent communications ._'stems.

The origin of the excess linewidth in semiconductor l_sers is not so clear

as in the ca_e of large-scale Ia._rs, since the typical mat:roscopic technical

sources ('f noise, such a.s mirror vibrations, dye stream fluctuations, a_nd the

like are absent. Early work on the power-independent linewidth attributed

it to fundamental rnultiplicative refractive index fluctuations due to electrov.

number-density fluctuations [11]. [t_ that work, the transformation of refrac-

tive index _nariation,'_ _n t,o fluctuations of the laser frequency 5v was derived

from the phenomenological relation

_u _n
-- = --. (2)
I/ 71

The refractive index fluctuations were h_cluded in a root-mean-square _nse,

(,eriw:d from th('rmodynanxi,' ,_'ot_.sid,:rations regarding the number-density

B-9
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fluctuationsof the electrons contained in the ax::t.ive medium However, this

model can not explain the onset of linewidth rebroadening. In later work,

various other mechanisms have been advanced to explain the origin of the

power-independent [inewidth, such as 1/f noise [22], and spatially-dependent

_empemture and cartier fluctuations [24]. Linewidth rebroadening has been

explained in terms of excess carrier density in the confinement regions of

quantura well lasers [5], and spatial hole burning [6]. These or other meeh-

amsms, such as injection-current fluct_mtions, may be operative in various

combinations in any particular laser. At pre_ent, however, there appears to

be no uniform explanation of a mechenism responsible for both the power-

independent ]inewidth and linewidth rebroadening in single-mode _micon-

ductor lasers.

The dissertation is organized as follows: In Chapter 2, a discrete-time for-

mula for the slowly-varying compl.ex envelope; oI the output field is obtained,

equettion (16). Tv¢_ regimes of the output fluctuations are examined: smaJl-

angle and large-angle. The small-angle approximation yields equation (30),

which has the h_rm of a finitc,-impulse-response fiker azting on the multi-

plJcative and input noise processes to produce the output fluctuations. From

this expression, the, impulse responses and fi:equency responses of the reso-

nant amplifier for multiplicative _md inp_Jt fluct_lations are obtained, finally

yi_4ding the output noise power spectrum, equat ion (46). h_ the limit of h_gh

net round-trip gain, t!:is becomes equation (,47), and the output fluctuation

power spectrum is dominated by mu_tiplicativc noise. This is the r ,,.ehanism

for the power-independent lincwidth. Numerical _irnulation result._ for the

large.angle regime illu:_trate incre_Lsing amplil _lde and phase, fluctuations due

13--10



to the random-walking phase and gain of the p_rtial w_ves F£gures 2 -

19 With increasing net g_in, the probability distribution of the output in-

tensity in the large angle regime moves to lower values as in I; - 2 _ and the

power spectrum bro_iens, (22 - 26 _his is the mechanism for the linewidth

rebrop_dening.

In Chapter 3, for the small-angle regime, the output field power spectrum

of the resotmnt amplifier is found to have a Lorentzian lizleshape, that has

width, given by equation (52) for a muitiplicative noise source that has white

power spectrum. This result hM the same form sB the phenomenological

result of equation (2). In the l_rge-sngle regime, the linewidth is predicted

to broaden, which is not predicted by equation (2). The resonant ampll-

tier analysis is finally applied to the la_er by raode]ling it as a noise-(Iriven

resonant amplifier. The linewidth of the laser has a power-independent min-

imum for the small-angle regime, and rebroa_iens following the onset of the

larse-angle re_me. A mivim.um linewidth for a .typical semiconductor luer

is estimated to be 120 Hz due to electron density fluctuations.

S-ll

-- , • .,, I [[



2 General Analysis of Resins.ant Feedback

System with Multiplicative Noise

In this Chapter, the standard linear analysis of a delay-type feedback sys-

tem is generalized to treat time-varying gain and phase perturbations of the

components in the feedback system. The gain and phase coefficients multi-

ply t.he complex amplitude of the field as it passes through the amplifying

medium, so that. gain and phase fluctuat_c.'-._ constitute sources of multipl_ca.

twe noi,_e. First, to frame the discussion and define terminology, the basic

a_alysi,_ of a linear delay-type feedback system without multiplicative noise

w_ll be reviewed, and applied to the case of a resonant optical amplifier. The

gain medium is tree,ted as a linear amplifier operating below saturation. This

amo_mts to a review of tb.e standard treatment [4] ef a resonant optical ampli-

tier, from which the familiar Airy formula is obtained. Next, a discrete-time

formalism, valid for a single oscillation mode at a cavity resonance frequency_

is developed including multip][cative phase auid gain fluctuations of the am-

plifying medium between the cavity mirrors.

In the standard analysis of a resonant cavity, the transmitted out.put

field is computed fl:om an infinit(' sum of pattially-refle.cted fields ii_si¢le the

cavity, ,Jr "p_Lrtial waves." Cavit,y resonances occur at discrete fre<luencies

when all of the partial wave_ add constructiv,,Iy. [:¢)r a p,,rfectly stable cavity

with net round-trip gaJn less than unity, an _,aalyti(: f,)rTn for this summatioz_

obtains. However. in the pr_,sence of m,lltil)li, at,re m_ise, the partial waves in

the resonator will [,ave randomly varying ptJ,use ,l_)(t ,_mplit,lde, ,,o the 1Jsual
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analytic summation is nor applicable. Therefore, in the present analysis, the

output field is comput(_ as a random phasor summatiou of all the partial

wave_ cont_n_,<t in tt_e ca.vity at dis¢'.ret:e instants of time. Tile case of an

ideal noiseless input field is examined first to appreciate the effect of the

multiplicative noise on the transmitted field. Then the more realistic case of

an input field with phase and amplitude noise is treated.

Two regimes are examined: a small-anKle linear regime, and a largo

angle regime. In the small-angle regime, t.he fluctuating complex pha_ of

the partial waves is le_ than 0.1 radians about the mean. In this regime,

expressions for tile output field amplitude and phase are analyticaUy derived

in t,erms of the power spectra of the rauhiplicative gain fluctuations and ad-

ditive input fluctuations, and the net round-trip gain. But it is seen that

the multiplicative noise is enhanced by the round-trip net gain, and that the

:esonant amplifier system acts like a ]inear finite-impulse-response filter in

r,ransforming the muLtiplicative fl_,ct_ations and the input field fluctuar, ions

to the output field. The impulse responses of the resonant ampiifior for both

multiplicative noise and input field noi_ are found to decay cxponcntially,

leading to Lorentzian terms in the _Jutl)vzr_field power spectrum. The fa-

miliar filtering characteristics of the Fabry-Perot cavity are obtained for the

input additive fluctuations. The response for the multiplicative fluctuations

is cnham:r'l a_ the gain is in¢:rea,scd, wherea,q the response for the input field

fluctuations decreases with incrca,;ing gain. For large enough gain, the mul-

tipLicative Ixoi:_e do,ninates the output field fhwtuations. It is shown that

the. elahanc,:rn.ont of the multiplicative fluct_lati,ms limits the output power

spc,ctrum to a minimum width dctcrmin,.d lw the net r,m:td-trip gain and ttw

B-L3
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multiplicative noise strength, in contrast to the prediction of the standard

al talysis.

For the c_Lse of large-amplitude multiplicativc noise exceeding the limits

of the small-angle approximation, numerical simulations are performed using

simulated _,oise time series. In this regime, the power transmission of the

cavity with multipticative phase fluctuations grows progressively more erratic

with increasing net gain. For large enough net-gain, the phase; of the output

field "wraps around" more than 2rr radians, causing discontinuous jumps

of the output ph_.se, and fasL spiky output amplitude fluctuations on time

scales much faster than the cavity photon lifetime. Also, the probability

distribution of the output inten,_ity becomes more like that of a thermal

source, and the power spectrum becomes broadened. In this regime, the

impulse response is no longer exponentially decaying, but becomes erratic

and enhanced at large t,ime.% resulting in enhancement of the low-frequency

portion of the output field power spectrum.

Finally, it is noted that althollgh the i)rimary concern of this analysis is

the optical resonant aznplifier, t_he resu]_ of this analysis should be applicable

to noise in other types; of feedback systems.

2.1 Review of Standard Linear Feedback Theory

To begin the development, the standard analysisof a simple delay-type feed-

back system with linear, time.mvariant components will be reviewed, and

then applied to a resonant optical amplifier similar to the approach found in

Sicgman [4). C'onsider the fi._edback system moctcl of an optical ('avi_y illus-

B41
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trated in Figure 1. The input, output, and internal states are electric fields

with sinu_idal time dependence. The input field R incident from thc left of

Figure 1 is assumed r.o be a sinusoid of frequency _ and amplitude AR,

= e (3)

The output field C(w) exiting to the right a_l_ohas the same sinusoidal depen-

dence, it is desired to compute the transfer characteri'._tics of the feedback

system from the input state R(_;) to the output state C(a,').

The sys_cm ha_ an inpu_ coupler 1 on the left of Pi&ure 1, and an output

coupler 2 on the ri_:ht. These couplers have brmaching ratio Pl.2 for the

reflected amplitude: and _1.2 for thc tran._nitted amplitude. The couplers

a.re assumed to be lossless, so that "_.2 -r. P_.2 = 1. The system ha_ complex

forward gain coetficient G(_;) and rever_ gain coefficient H(w). A crucial

assumption is that the gains G('.-') and H(w) are linear. _ that the output

field can be computed as a vector addition of partial waves. If the gain is

non-linear, then mixing produc(,s will be gencratcd at new frequencies. We

will a.ssume that r,he cavity behaves sa a. linear re._nant amplifier, with the

output fi,._ld amplitude linearly related to the tnput field amplitude.

Throughout the remainder of the ane_l_'si,_, the explicit simisoidal time

dependence of R(_), C(_) etc., will be understood, and R, C etc. will be

I_ed instead. For a pure sinusoidal input field R that has been applied for an

in.finite ttme, the steady-state outp)lr, field C is the summation of an Jr_Jnite

)mrnb(:r of partial waves which may be wrilten

C = ("rI",2)GR + ('rI'_)(p_p_)G'_HR Jr"(?l_',,)(l':l,_)aGaH_R

B-15
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+ (_'1_2)(PtP_) 4G4H3R +'"

= (:qS'.2)GR[1 .'- pip_GH + (plt_GH) _ + (Olp2GH) 3 +'" "] (4)

The term outside the square brackets represents the transmission of thc input

and output couplers :q_,l, and the forward gain G for first one-way pass

through 1;he ca_'ity. The t;erms inside the brackets represent the successive

feedback terms which experience a net round-trip gain plp_GH on each trip

through the cavity. For net gain pI_GH < 1, the quantity inside the square

brackets may be anal_icMly summed, so that the output may be _'ritten

C = (w_'_)GR (5)
1 - (pip,_GH)"

Equation (5) has the form of the Airy formula obtained via the standard

treatment of a resonant optical amplifier found in optics texts [4]. Identi-

fying pl, p_ and -_,-:,2 as the mirror amplitude reflection and transmi_ion

toefficients, respectively. Etnd setting G = H = Goe -'_t/c as the gain and

t_hase experienced by a field for a one-way pass through the cavity of }.ength

l and index of refrncr, ion n, with c tim speed of light in vacuum, the familiar

transmission characteri_tic for a Fabry.Perot resonant amplifier is obtained:

C ?l"r2Goe-"_/¢

Tl',a,') = -_ = 1 - p,.p2G2oe -'_-'t'c (6)

Th¢_ power transmission function is the magnit ud_,-._quared of this expres,;ion:

Po,,_(,<1 ('r_'r2Go)2
P,n_') 1 + .ptp2(:,_) _ - 2plp_G2o cos(2_onl/c)" (7)

The resonant amplifier power Iransntission function is plotted in Figure:

2 for facet reflectivities Pt = f_ = 0.9 and Go - 1. The system is r_omtl_!
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a,t frequencies corresponding to integer rnuItiples rn --1.2,-. • of the inverse

round-trip tinge through the cavity -r := 2nl/c:

2_m
_,_ = _. (8)

T

Equation (5) is tile general form of the input-to-output transfer function

for a richly-type feedback system as a function of frequency. This expres-

sion is valid for a system with no mejtiplicative noise, ax:ting on sinusoidal

inpl_t fields. As the feedback fraction is increased, the widths of the trans-

mission peaks given by equation (7) decrease. The half-power ,tmplificat_,on

bandwidth of a resonance peak is {4]

1 - plp_G_o 1
,_v _ (9)

PlP_G_ lr'r

So, as the net rount',-tri=_p_ain approaches tmity, the bandwidth of the re,_>-

nant amplifier approahes zero.

2.2 Linear Feedback System Analysis with Multi-

plicative Noise

In Ihit_ section, a general formalism will be developed for deriving the sys-

tem output field C for the resonant anq}lifier of Figure 1 when the forxvard

_n{t reverse gains are perturbed by tnultit}licative noise. The nmltiplicative

noi_e may be fundamental, or techt_zcal in origin, as di,,;cusse,:l previously. In

the general c_e l,hat G and H have non-neglig|ble gain and phase fluctua-

t ions. t h_ closed-forrn summat ion leadinv t_ _(tLlat 1on (5) can not be applied.

Instead, the partial waves must bo explicitly _,llllll]:_ed to obtain the outpllt

_q7
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at each desired time instant t, and the amplitude and phase of the output

field at the optLcal frequency win, wiU fluctuate in time. This analysis will

compute the slowly-rvsrying complex envelope of the output field at a cavity

resonance win, or C(wm, t).

It is desired to analyze the fluctuations of the output amplitude and phase

of C(_, t) on time scales that are tong compared to the period of the optical

frequency _. As will be described, this can be conveniently done by moving

to a discrete-time picture of the system, breaking up time into discrete incre-

ments _._lual to the tinle delay for one round-trip through the cavity, _-. Aft4.

the completion of this work, a similar approach was discovered in Reference

[7] in which Z-domain techniques from digital systems theory were used to

obtain the transmisskm and reflection characteristics of Fabry-Perot eta_ons

versus the optical input fTequeacy. However, in that work, no time-variation

of the feedback coefficients was considered. [nateafl, the Z-domAin an_ysis

was used to simplify the difficult problem of computing the transmission and

reflection characteristics of complicated multi-layer structures. In the present

work, a similar discrete-time approach is used on a simp[e two-mirror Fabry-

Perot structttre, but extended _o the case of thme-vmTing gain ¢'.oct_cients to

comput_ the noise properties of the output field.

For the speciM case of a feedback system operated near resonance, such

as a Fabry-P(_ot optical cavity, tbe throughput is only appreciable in narrow

bands of frequenciesnear the cavityresonances which occur at frequencies

_m, aa seen in tileprevioussection.All other frequenciesare heavilyattenu-

ated • In many practicalapplications,such as the

laser,the fluctuationsof the cavity transferfunction near a resonance fre-
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(tuency are of primary interest, since they determine the long-term stability

of the laser frequency. Also, t he system operates at a single cavity resonance,

so a fl_ll frequency domain analysis is not really necessary, and it is sufficient

to analyz_ the effect of the gain coefficient fluctuations on the behavior of

the cavity near the resonance frequency of interest.

Now, the resonant amplifier of Figure 1 will be analyzed near a single

resonaJ_ce fl:equency when the gain coefficients G and H are perturbed by

noise. To keep the anaLysis simple and the results transparent, initially it

will be assumed that the input state R is a pure sinusoid coincident with a

resonance fl'equency, a;,,, with constant amplitude An, as defined in equation

(3). Later, the more reMistic ca_ of an input field with additive noise wi.ll be

treated. The input and output couplers I and 2 are assumed to be identical,

so that p_ = p_ = p and "_ = _2 = "_- It is assumed that the cavity

length I is time-inv_iunt, n.s is the nominal refractive index n. All phase

or gain fluctuations are described by cnmplex zero-mean random variables

_g(t) and 6t_(t). The time-v_rying forward and reverse gain coefficients due

to multiplicative noise are then m_)deled as

G(_,,,_)= Go e-"_'_/¢e-'_9i'I= G° _.-,,_._t/_G(t). (I0)

H(w,t.t) =:H,, e-'"_"<1%.-"_h('!= Hoe -'_''zl_H(t). (II)

where Go, Ho represent the static for_'ard and reverse loss or gain, e -'r_'l/¢

is the static ()he-way phase shift added to a .,ignal at frequency ._._ passing;

through the cavity. At a loop r(,sonance w._. the static phase shift will satisfy

the conditi(m r_w_l/c :-- 2rrr, radians, with m an integer, bg(t) and 5h(t) are
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complex random variables representing the time-.varying phase and gain at

frequency _,n. These may be written

_.a(t) = _.,f(t) + i_g"(t) (12)

_h(t) = &'(t) . ,_l,"(t) (la)

where the, real parts 6g'(t) and 6_((t) represent phase fluctuations, o,nd the

imagi,_ry parts _9"(t) and _h"(t) represent gain fluctuations. The statistical

description and any correlation of the real and imaginary parts will depend

in detail on the physics of the gain medium.

The tran._formation from a continuous-time representation to the discrete,,-

time representation is accomplished by considering the static phase shifts

e -_'°'_'t/¢ as delay elements c,f duration r/2. as illustrated in Figur'*. 3, and rep-

resenting the conti.nuous-time gain variations of G(t) and H(t,) as e_ discrete-

time random sequ.ence of complex values Gt and H, with dc gain G_ and

Ho:

Gt = Go e -'_' = Go G,. (14)

H, = Hoe -''h, = Ho &. (1,a)

separated by time-intervals r. (Throughout the, rest of the analysis, discrete-

time variables will be deno*,cd with e. subscripted t.ime in(lex, e.g., Xt, to

distinguish them from continuous-time quantities: X(t)). lu this disrrete-

time picture. C('.,',r,,t} is _,ssutn,_[ to be a pure :;inusrdd at loop resonance
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frequencyw,n, with slowly-varying amplitude and phase fluctuations, which

wall be refi_rred to as Ct.

Now. we apply this discret_time definition of tile gain to the linear anal-

ysis of the previ.ous section to obtain an expression for the output field Ct.

At time increment t, the fi)rward gain coe_cicnt is Gt, the reverse g_dn is Ht,

and the input: state is Rt. For not.atioual clarity, it is understood throughout

that time index t - j refers to time t - jr, since time has been quantized in

vnits of the round-trip time in the cavity r. The output state is then written

Ct = ":'"_G,Rt + 7_p2GtHt-lGt-tR,-s

+5'_/(';_Ht-_Gt-LHt ..'_Gt-:_Rt-2 + • • •

= _gGt[Rt + o2Ht-_(;t-IR_-I

+o4Ht--IGt- tH,-2Gt-._Rt-2 + '..] (16)

[t is assumed that, the dc forward and reverse gains _md static pha_ are

identical, so that Go = Ho. This assumption is equivalent to requiring the

loss (or gain) and tim¢-obflight to be equal for both direction:_ of propagation

ixt the optical cavity. This is a good assumption for a Fabry-Per_,t cavity,

since the light [:,as:ms through the same physical medium in both dir,,ctions.

but may not be valid fox' other cavity geometries. It is tim.her _sumed that

the gain fluctuation rate is sh.,w ¢ompared to the tirrw-of-flight r for a round-

trip in the cavity. Then, it. is valid to a,_sume the forward and reverse gaan

fluctuations are equal over axty rotund-trip time interval r, so the round-trip

ga_u may be written Grit, := 1t2,. Then. defining the time-varying net round-

trip gain t,o be p211_ = Kt, the OUtl)Ut field at time t is given by the infirlite
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series:

Ct = "r2Ht[Rt + Kt-lRt-i + Kt.-iKt-2Rt-_ _ .... ]. (17)

To analyze the characteristics of the gain coefficient fluctuations on the

output field, first the cruse of an ideal noiseless input field will be examined.

The input state is taken to be a constant Rt = R for all times t, so it may

be factored out of equation (17). Then, the output field Ct is expressible as

an infinite sum of partial waves in the cavity at any given time instant t:

Ct =_ "r2HtR[1 + Ke-1 + (K,-1Kt-2) + (Kt-IK,-:Kt-s) +" " "]. (IS)

This infinite series will be truncated to a finite number of M terms, a_

follows. I._ the gain fluctuations J_e small, then the amplitudes of the succes-

sive terms are deterrnined by increasing powers of the static net round-trip

gain coefficient, so that the j - 1,_t term is proportional to Ko_, %qmn the

mean value _f the net round-trip gain is less than unity, Ko "-=p2H_ <: 1. the

infinite sum of K_ is equal to 1/(1 -Ko), as was used previously to derive the

Air}' formula, if a finite number of terms are used instead, the summation

of K_ from j = 0 to j =: M is given by

j.-.o 1 - Ko (19)

The value of M is determined by requiring the dd_erence between the in.finite

sum and the' finite sum of M + 1 terms to be less them a small fraction e of

the value of the full infinite sum. ]?his condition is writ.ten
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Then, solving for the required number of terms M yields

(20)

M > 1. (21)
_n(Ko)

We shallreqmre e < 0.01.or the differencebetween the finitesum and the

retiniseeum of lessthan I percent. For example, ifKo = 0.9, then from

equation (21) we obtain M > 43. The time i.ntetva]Mr isproportional to

the memory of the feedback system, and inereas¢_as the net round-tril,gain

K approaches fruity.However, itwillbe seen laterthat the value of M just

derived isonly validin the ease of small gain fluctuations.

The output fielda_,any time t isa random phasor sum of the M + 1

partialwaves. This expression m_y be east in a more illuminatingform by

substitut:ing the full form of the discrer, e gain coefficients for the /4t terms

gwen by equation (15). Doing thi_ and simplLfying yields:

, 2 2 e-2i(3_-_) 4 4 e-2t(_h,-i4.*ht-=lC= = ",'_Ho e-'(*h'lR(l + p H o + p H o

_2Mr,2_f e-2,(*h,_l,.*h,._ .... .6t,,..M)}. (:22)4.... "t'-p .,'I. ,

Each sucee_mive terra of this expre_si()n represents an individual partial wave

theft has travelled an increasing number of times through the cavity, and ha_

thu_ experienced the gain and p},_e flu,._uation:', bh, over an increasing time

_tp;tll. For t.he case of no gain ()r phx.se fluctuations, (i.e.. t;ht = 0 for all t,)

t,his expres*don mac be summed a:mlytically, aild collapses to the well-known
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Airy formula, for tile Fabry-Perot transmission derived previously. But in the

present, form, each. partial wave has a different random gain and phase, due

to the multiplicative complex fluc.tuations 5hr.

From equation (22) it is seen that the phases of the successive partial

waves are cumulative sums of the muItiplicative noise process dSht over in-

cres.sing times. If _h_ is a white Gaussian complex noise process with zero

mean and warfi_nce cry, then the complex phases of the successive terms

represent a random walk process. The variance of a random-walk process

grows linearly with time, so the complex phase of the Mth partial wave.

2(6ht-l + 6h_-2 + .... + 6ht-M), will have variance a2M = 2Ma_.

There are two regimes which we may identify with respect to the phase-

spreading of e,he partial waves in the output field summation of equation (22),

which we shall denote a,_ the small-angle and large-angle regimes. The small.-

angle regime corresponds to relatively weak multiplicative noise and/or low

Ilet round-trip gain, such that _he root-mean-square complex phase of the last

(i.e., (M+. 1)st) partial wave is less than 0.1. In this c_e, the exponentials in

equation (22) may be linearized by the small-angle appL'oximation, and the

summa'lion for Ct may be obtained analytically, as will be shown.

The large-angle regime corresponds to the case when the the rm,; com--

plex pha_ variance of the older partia.l waves exceeds (}.1. In this case, the

small-angle approximation does not obtain, and the full phasor expres,sion

of equation (22) must, be used to compute the output fieht Ct at eax'h tinw

increment t. For a large multiplicative nob.e variance a_, and/or high nel

round-trip gain h'o --, l, the randnm-w_tlkinll pha_,e fluctuations of the later

p_trt ial wave.,, tIlay _erothe l,trge ermllgh to cause destruct ire interference with
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the earlier partial waves, causing large fluctuations of the output field am-

plitude _md phase. Also, the random-walking gain fluctuations of the later

partial waves will eventuMly cause significant, deviations from the exponen-

tial deca+' of the partial waves given by K_. This causes the value of M to

increase, which leads to enhanced low-frequency fluctuations of the output

field.

First. the small-angle reDme will be analyzed. In this regime, the phase

fluctuations of the output field ctue to multiplicative phase noise are en-

hanced _m the net round-trip gain is increased. Then, the large-angle regime

will be examined by computing the full phasor expression of equation (22)

for constant multiplicative pha_e noise variance while progressively increas-

ing the net, round-t,rip gain. The transition from the smaJl-angle to large

angle regimes is marked by the onset of rapid, large fluctuations of the out-

put field amplitude and phase, and a decrease in the average output power.

The restdts obtained will be used to calculate the linewidth of the resonant

amplifier in each regime. In the small-angle regime, it is found that the mul-

tiplicative phase noise leads to an out pnt-power-independent contribution to

the linewidth of the output field power spectrum. Ia the large-angle regime,

the linewidth increases with increasing net _in. Both of these results are

connter to the decreasing linewidth with inc_'c_ing net gain expected from

eqllation (9) for the star_dard analysis wit hoist multiplicative nolo.
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2.3 Small-angle multiplicative noise regime: linear

approximation

In this section, tile case of relatively weak multiplicative noise will be treated

using a linear approximation. The last term of equation (22) represents the

"oldest" partb_ wave that; has travelled M + 1 round-trips in the cavity. The

complex phase of this wave is an M + 1-step random walk. The small-angle

regime is defined as the ca_ when the standazd deviation of the complex

phase fo_ the M + 1st partial wave is less than 0.1, or

_ah _<0.1 (23)

where M is defined by equation (21). Then. the small-angle approximation

for the exponential (e_ _ 1 + _.) can be used to linearize the expression for

the fluctuating output field .,,othat equation (22) may be rewritten:

Ct _,._"t2Ho(l+ z(6ht))R[1+ p'QI_ (I+ 2i(_;h,..1))+ p4H4o (I + 2_(3ht_i+ dh,..2))

+ .... _- p'_,'vIH2oM (1 + 2i(6h,__ + 6h, ._ +... + 6h,_m))]. (24)

Substituting Ko = p2H_ into this expression yields:

Ct =: "t_Ho(l + i(6h,))R[1 + Ko (1 ÷ 2_(6h,_1)) + Ko_ (1 + 2i(6h,_l + 6h,_,_))

÷ .... _- K;" (1 + 2i(_h,__ + ,_h,_2 + .... _-_;,,_ .,,))]. (25)

Expanding this expression wil[ yi(,ld many terms of 0(6h2), like (6h_bht_k),

which are :;mall ,:ompared to O(Ah), and so may be discarded, leaving
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Ct "r2HoR[(1 + No + Ko2 +" "" + K;_') + (1 + Ko + K{ + ... + K_')(i_Sh,)

÷(Ko + Ko2 +'" + K;'l)(21fh4-x) + (K2o + Kao+"" 4- Kg_')(2i3h,._2)

+ .... + Ky(2_,__.,_)]. (26)

The term proportional to bh, is due to the phase fluctuation encountered

in the first "half round-trip" through the cavity. All other terms repre_nt

"full round-trips" through the cavity, hence the factors of 2 appear in terms

_ht-.1, fiht -2,'" " etc.

The summ&tions of powers of Ko may be performed analytically using

equation (19). The coefficients in equation (26) are then designated as ak,

where the coefficient of th(, first term is no, defined as

(M+t!-l 1 -- Ik"'_.l
a0:= _ KS = --o

j-o 1 - Ko

and subsequent terms ok, k k 1 may be written

(27)

ak =

,,\s ,If -. ,. a_. converges to

"0- E Ko'
1=0

l-K; _t÷_ 1-A'_
1 - Ko 1 - Ko

1- Ko
(2_)
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Now. substituting the coefficients a_ into equation (26): for the present

speciaJ case of a noiseless input R, the out,put field at. any time instant t'is

seen to be a weighted summation of the multiplicative noise samples ht over

r_he time interval t - M to t:

= "r"HoR[ao + aoi6ht + ali25ht_.l +... + aMi26ht_g]

[ " l= _2t-IoR a.o(1 + i6h_) +. _., ak i26h,_k . (30)

Finally, the factor 1/(1 - Ko) may be factored out of this expression to yield

(31)

This expression represents the t.ransforrnation of the muh;iplicative pha._e

and g_dn fluctuat.ions to the output field at every time instant t. The first

term i_s the static gain of the resonant amplifier as given from the stanclard

_nalysis leading to equation (5). Recall from equation (13) that 6h; is a

complex-valued random serics whose reM and imaginary parts represent the

time-varying gain and phase, respectively, of the amplifying medium Phy_

ically, the real-valued coefficients ak detern'Line the contribution of the mul-

tipli.cal;iw,, pha,_e and gmn fl_J.ctuation at the previous time increment t - k

to the output at time increment t. It is appare,_t from equation (31) that

for !K,,] < 1, the a_ magnitudes decrease exponentially with increasing k.

Thus, noise event_ further removed in time from the time increment t have

a dimini,shing effec't {m the _mtput, state. In this ,_mall-angie ttppro×irrmtior_.
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noise events occurring at. times prior to t - M have no effect on the output.

which is just an analytic statement of the finite memory time of the system.

In the am_lysis thus far. fluctuations of the iapu_ field R were not consid-

ered. In general, the input R = R, may also have a time-varying amplitude

and phzLse. To I_reat this possibility, the input state is now deft.ned in the

continuous-time picture as a sinusoid with mean frequency coincident with

a cavity resonance _',_, perturbed by amplitude noise 6A(t) and phase noise

g(t) = (AR -_A(t)) e'¢'_'_(_). (32)

Assuming $¢t < 0.1 ra_li_n, _he small-angle approximation can again be

employed, and t.he time-varying input field R(t) may be manipulated into

the discrete-time form:

Rt _ (A_¢ + 6At) (1 ._-_dt)e ''_'_

= (AR -'- aAR$o¢ + OAt + i6At6dt)e ''J't

.4R 1 + i6 , + ]

= .4Re' .... t(1 _-,_R_)

R, =. Ro(I +6R,]. (33)

where the term of O(,_A)(_.O) wtrs neglected, sin¢'e it i,; small compared to

the terms of O((:A) and O(bT(:_),and the noise sources _A amt be _re assumed

t_, b_, uacorrelat.ed

Now. this expression for l l,e fluct uating input field is irlSel ted into the full
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form of equation (22) to obtain the output at every, time increment t clue to

both input field fluctuations and mu/tip[icative gain fluctuations:

c,

(34)

Using manipu.lations similar to those used to derive equation (31) (the de-

tailed algebra is relegated to an Appendix) a simplified expression, for the

complex output field amplitude is obtained:

c,
"_2HoR,
_:-EooL1 ÷ i_,J,,+ Koi2_h,__I<2oZ2_,h,.2+... + K_oQ26h,_IM_l}

+(1- Ko) (_R,+ S'o_R,_,-_Ko_6R,_,+ K_R,_, ._-...+ t¢'_.R,_._,_)_)

The powers of Ko multiplying the 6R terms may be defined a.s a set of

coefficients bk:

bk ,= Ko_. (36)

The fi_ll expression for the output tielcl can now be written more compactly a.q

summations of the two noise processes 6hi and bR_ in terms of the coet_('ients

a_ and b_:
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This expres,-;ion rep,¢_ents a linear approxim_ti.on to the flnll form of equation

(22) for the slowly-wtrying complex envelope of the output field Ct including

both input field fluc_uations and mult:iplicative phase and gain fluctuations.

This linear approximation, is valid in the small-angle regime as defined by'

equation (2:_).

Now, the power spectrum of the output field in the small-angle regime

will be calculated. I_uation (37) has the form of a finite-impul._,-response

filtc, r operating on "input." proce_es 6ht and _Rt. For linear systems in

genera.1, the Fourier t:ransfi)rm of the time impukse-response yields the output

frequency response of the system [8]. For an input field noise source modeled

by a Gaussian-distributed random process, the powcf spectrum of the output

field is the product of the input noise power spectrum and the magnitude-

squared of the system frequency respon_ [?]. So, if the impulse responses,

net round-trip ga.in Ko, and the analytical form of the power spectra of the

multiplicative fluctuations SpL(f) and the input field fluctuations Sa(]) arc

known, then the output power spectrum Sc (f) may be obtained analytically.

'rue impulse-respon.,_s of the re_nant: amplifier output to a deha-flmction

of multiplicative noise _ht or input noise 6R¢ are defined to be 6C^,c and _CR.t,

respectively Thc multiplicative impulse-response 6Cht is the decaying otlt-

put field response givclt by eqtmtion (37) due to a delta-function multiplita-

r,ive impulse in bhf applied t_ the system at time t.--O:
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_Ca.t = 72HER 2¢t

( 2_ 2HoR _

2"_'_HoR e..rt
- (I -Ko) u= (38)

where the decay constant, and ut is the unit step function, with u, = 0 for

t < 0, and ut = 1 tbr t > 0, and it is assum¢_l that t takes only integer

values (i.e., time is normalized to increments of r). The first half-round-trip

(k = 0 term) was taken re) }m equal t,o a full round-trip. For M > 100

corresponding to Ko > 0.95. this introduces a small error of less than a 1

percent in the output sum. The response to ar, input field impulse in 5R,

is obtained similarly as the response of equation (37) to a delta-function

impulse in 6Rt applied to the system at timc t = 0:

_Cn,t = _2N,,R b_ ",t

="?HoR K'o,_t

= _HoR c -v' ut, (39)

The Fourier transforms of the impulse responscs 6Ch., and 6CR._ yield the

corresponding frequency responses Fn(f) and Fn(f), where f is the Fourier

frequency. Both impul_ _esponses represent decaying exponentials, ]c_tding

ro Loremzian frequency responses given by

F,IJ)= ( 2.,,.oR_
\(-1 - K,,)F) L- ,;_,_I (40)
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and

(')HoR) 1
FR(f) -= \-"--_--/ i + i-2*-/, (41)

where -,'c-=I'/_ isthe rol]offfrequency of the Lorentzian response.

The powe.r spectrum of the ontput field is comprised of three terms: a

dea.-flmction term due to the sinusoida] input R, and terms due to the rnul -_'

tiplieative and input fluctuations. In the absence of multiplicative noise, and

for a pure sinusoidal input field R at a resonance frequency w,.. the output

power spectrum So(f) is a pure sinusoid of frequency w,n, with magnitude

given by the constant, term in equation (37). This may be written as

=

= \1 - Ko} 6(f) (42)

where the delta flmction is defined a_ 6(0) -_ 1 and 6(x) -- 0, z ¢ 0, and

is centei_d on frequency ._. The Fourier frequency f is the offset in v

from the optical frequency -:,n, This is equ:,,'alf,ut to the power gain ,.

the peak of the re.,_nant amplifier transmission :" given by equation (_).

The noi_ p_oeesses 6he and 6R, give rise. to a_Jditional terms in the output

power spectrum. It is assumed that the noi_ oroce,_se.., 6h_ and 6Re are

uncorrelated, ._) the power spectra due to each process may be added. The

term clue to raultiplicative noise is the product of the multiplicative noise

power spectral density Sh(f) and the raagnitude-squared of the frequency

response Fa(f). Similarly, the term due to the input noise is the l:,roduct of

B_J3

..... , i I I



theinputfield,noisepowerspectretdensitySn.(f) arid the magnitude-squared

of the frequen.cy re,;ponse FR(f). The addition of equation (42) and the two

noise terms yields the total output power spectrum:

Sc.(I) = \1---_oo] _(f) + [Fh(f)[ 2 Sh(f) + [/:)_(f)l 2 Ss(f) (,t3)

Substituting for the frequency responses Fh(f) and Fn(f) and subsequent

simplification yMds

+ k(i:-?r r t s,,(/) +
, " .de

Consider the la.,t tern] of this expression due to the input noise 5R. For

low gain and/or low multiplicative noise, the signal-to-noise ratio inside the

amplifier bandwidth will be r,hc same as th_ him,', signal-to-noise ratio. Phys-

ica.lly, the last term implie._ that the output field phase and amplitude exactly

follows _.he input field phase and amplitude fluctuations for raters less than

the c:tvity bandwidth w_, which ia intuitively correct. For fluctuation rates

f,_ter t_han we, the input field fluctuations are rolled off a._ l/.f _, as expected,

since thev lie outside the bandp_s of the cavity As the net gain Ko is

increa_d, _-'c decreaaes, and the integrated nois,_ p_wer due to the input: fluc-

tuations decr_,ases, implying a decreased ,:pectral width of the output field.
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The resonant amplifier therefore produces a narrowband output signal of

high spectral purity from a broadband noise input when the net round-trip

gain Ko is high. This is the expected behavior of a resonant amplifier as

obtained from the standard analysis leading to equation (7), and is the basis

of the linear model of the Ins,.,' as a noise driven resonant amplifier [4], which

we will return to .later.

Now consider the second terra of equation (44) . It is seen that the second

tcrrn due to rnultiplicative noise 6ht is multiplied by the factor 1/(1 - Ko) _

compared to the last terra due to the input fieM fluctuations 6Rt. What

is significant about this is that as the net gain Ko is increased, given fixed

levels of input fluctuations SR(f) and multiplicative fluctuations Sh (,f), even-

tually the outr.ut field power spectrum Sc(f) will become dominated by the

mui.tiphcative noise,. After this happens, the signal-to-noise ratio for Fourier

frequencies less tha_ wc will clecrease with further increases in the net gain.

Making use of the fact that fo_ K_ _ 1, V = ]¢n(Ko)] _- (1 - Ko), the

2 _, (1 Ko)/r. Making thisrolloff frequency may be approximated as wc

substitution in the second term of equation (44) yields

.%(/)t_o-1
2

= \i--_j

(f) 4 1 • s_(f@)-t- (1 - t<o)2 -,-(2rr,fr) _ S_(f) .- 1 _- _

In the limit _,; ho --- 1. the second term due to multiplicative noise over-

whelms the last term, _o lhe output power spectrum becomes

13-35

I, I



(','2HoRn2((2_fr) ---''-_4 )scCl) = 6(f) + &(I) (46)

In the limit as Ko _ 1, the inte_ated multiplicat.ive noise power given by

the second term in equation (45) approaches a constant value, which implies

that the spectral width of the output signal also becom_ constant. This is in

marked contrast to the prediction of the standa.rd analysis [4] of equation (7),

which predicts decreasing linewidth with increasing gain. In summary, for

low net gain when the input field fluctuations are dominant, the width of the

output power spectrum decrease_ with increasing gain. But as the net gain

Ko ---* 1, the multiplicative fluctuations eventually become dominant, and

the power spectrum of the resonant amplifier approaches a constant value.

Therefore, a mini:._,lm [inewidth should be expected for resonant amplifiers

operated at high gain in the pre_ence of multiplicative noise. To r.he extent

that. the multiplicative fluctuations arise from fundamental thermodynamic

proccs,_cs [12], _his minimum linewid_h wilt be a fundamental limit.

2.4 Large-angle multiplicative noise: numerical anal-

ysis

In tLis section, the full phasor form of the, output field given by equation

(22) is a_m!yzed in l he large-angle regime, by numerical simulation using

computer--generat_,d random t ime series to represent the, multiplicatiw, noise.

Thi,_ approach _s taken I;o investigate the behavior of the outpu! field ampli-

t_ld_, and pha.se when the variance of the complex phase of the older partial

waves exceeds 0.1 radians, so the small-_mgle approxim_tion which permits



the analytic derivation of equation (23) no longer obtains. The output field

time series is computed for a noisele_ input field R of unit amplitude at fixed

cavity resonance fl'equency _,,, for various values of the net round-trip gain.

The calculations are performed for a 300#m-long Fabry-Perot semiconduc-

tor _ascr c_vity, at 1.3/1m wavelength, with equal facet power reflectivities

p2 =: 0.32.

The real _nd imagina.,3, parts of 6ht ._re assumed to be conelatcd, as is

the ca._e for phase azld gain fluctuations arising from electron-number fluc-

tuations in a semiconductor laser gain medium [10]. The real and imaginary

parts of 6ht are written m terms of a commen noise source 6nt representing

fluctuations of the refractive index:

_h(t) = 6W(t) + ,6h"(t)

i -+ 6n(t) (47')

The <:onsr.ant # rel&l.es the changes m the real and imaginary parts of the

refractive index due to electron density fluctuations, and is a measure of

the amount of amplitude-phase coupling for waves in the gain medium. It

wa.s shown (2], [3] that ,_Jis responsible fc)r broadening of the semiconductor

!aser [Jnewidth above the Schawlow-Townes prediction, and so ,'_ is typically

referred to Em the ]inewidth rnbancement factor The refractive index in a

semiconductor laser gain medium is typically modelcd as ,, ]meax fun('tion of

.*he cazrier den,_ity [?]. "['h_)s. changes in the eh'ctron density d_t, to injection

current noise, thermal fluctu_ti(ms, or e[ectr,n-hc)[c recombination t)ror_es

c'au:,e (orrelated chazlges in tho gain a)_d phrase of thr amplifying mediu)Tt via
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Comput¢_ simulations were run for increasing net round-trip IgS_t/(o 'ffi

0.9, 0.95, 0.99, 0.995, and 0.999, which represents three orders of msgaitude

change in the net gain. For each value of K,, an N-element complex v_cWr

of the fluctuating output field Ct is produced. For these net gain values, the

total numbers M of pertisl-w'_ves used In the summs_io_ were, re_ective]y,

M - 50, 100, 500, I000, sad 5000. The complex multipl/cst/ve nolo, protein

6hi i._ by • computer-generated Gams_aa-d_trlbuted zero-mean

random time series with standard d_'/stiou of crh, m 0.I. This Impl_s that

the system is In the large angle regime for all of the net gt_n values tetted.

The comput_ producm • turin of random values horn s GsuMhm distribu-

tion such that the. rn_l value of Itn infinite number of such vs/ues would be

O'h'.

The computed re_dts for net round-trip g_n of K, - 0.9, 0.95, 0.99,

0.99,5, sad 0.999 &e now dlscumeci. To me the quadJtathm effect of the

increasing net gain on the output, the real sad imaginary _ of the output

electric field Ct are dJJplayed parmnetrtcelly In t_ complex plan_ in Fig 2

- 6, for in=mudnl vt/um of K,. In these plots, each of the N do_ on the

compla phum repremnts the computed poeltlon of the tip of the output field

vector C,. Filuze 2 lllustrstm the case of net round-trlp gain Ko m 0.9. The

tip of the electric field vector describm an arc with maximum pham e_:uritton

c,f sparely +/- 0.3 redim_, but with relstlvely constant _pUtude. AJ

the gain is incre_ed to K. -- 0.95, 0.99, 0.995, sad 0.999, tlluetmte _ in r J._32

- 6, the mtximum phem excursion increum and the &rap"rude exh/bltJ

pro_e_ively l_lm' fluctuation, which tppetr u • swtrlinl p_tern in the
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complex plane. Ifthere were no multiplicativenoise,allofthe dots would

fallon one point on the realaxis,determined by the staticgain I/(I - A'o).

The small-angleregime t:eat,ed previouslyrepresen_ small excursionsabout

tkispoint.

As the output fieldvector swiz-lsaround the complex plane,Figure 4e,

the rna_nit.ude and phase change drastical/y. The phase and iaatsntaneoua

intensity(magnitude-s<luaredofthe electricfield)versustime foreach v_lue

ofnet gain areplottedin F£g_res 7 - 16. As the net gain incr_ses,the

period and amplitude of both the intensityand phrasefluctuationsincrease.

At the lower gain valuel,the mean wlue of the _ntensityfluctustiousis

close to the vLlue expected without multiplicativenoise. However, as the

gain isincresaed, the amplitude of _he intensity fluctuationsincrease greatly.

The intensitybecomes more deeply modulated, and the mes_ value of the

intensitymoves to lower v_lues.This bekutviorismore apparent from the

probabilitydi_ribut;ionof the intensity,discussedbelow. As the net gain is

increa_d, the phue fluctuationaznplitudealsoincreues (.Fig 12-I 6 )until

eventually,the plume "wraps around" more thatn7rradiaus.

The probabilitydistributionof the power versus increuing net gain is

plottedinz_-9 IT - 2:tAtKo = 0.9,the probabilitydi_ributionha_ devel.

oped & "tail"stretchingtolowervaluesofintensity.As the net gainincreues,

thi_tailbecomes more pronounced, and the mean value of the probability

di_ributiondc_res_ms,At high gain of Ko =_0.999,the intensLtyprobability

distributionispeaked near zero,neatlyresemblingthe probsbllltydiBtribu-

lionofa thermal emmsion _ource,or a below-t_eshold luer. The shih ofthe

tnemn intensityto lower valuesisinqualitativeagreement with s theoretical
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Fokker-Planck analysis and experimental results obtained for a helium-neon

laser with multiplicazive loss noise {15]. This shift of the probability distribu-

tion to lower values with increasing gain is contrary to the behavior expected

for _he resonant amplifier without multiplicative noise. In the context of l_er

operation, this result implies that the mean value of the intensity probability

distribution will initially grow as the gain is first increased, but eventually

will reach a maximum value, and then begin to decre_ze.

InF_.cj 22 - 2_the power spectrum of the output field versus incre_asLug

net gain is plott_i, The noise Level progressively increa_s aJ the net gain

isincreased. This isnot unexpected, given the increasinglyIszge intensity

and phase t%ctuations of the output fieldas the net gain isincreased. In

the almence of multLplicetivenoise,the output power spectrum would be a

delta-function,sinceno input noisesource i_included in the simulations.

It is noted that in all of thee results, the variance of the multipLicative

noise time-series was kept constant, and only the net gain was changed. While

such a large value of muJtiplicative noise, may not typically encountered in

practice, these simulation results serve to illustrate the elfects of increasing

net. g_n on the output field. By t_ng a relatively large value of multiplic_tive

noise, it was possible to study the qualitative behavior of the output verlus

net gain using & manageable number of partialwaves. In a semiconductor

laser,net gains of Ko _ I - I0-s are typical,requirings.pproxlm&telyone

millionpsa'rialwaves per time increment t.osimuht_. To obtain s reasonable

estimate of the output power spectrum, at lea_t1024 time increments need

to be computed, which becomes computationailyprohibitive.
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2.5 Detailed description of simulation algorithm

For eac]l value of Ko, the details of the simulation algorithm are as follows:

First. a real-valued random noise vector _n_ of length 2N is generated. Then

the complex vector 6ht of length 2N is generated according to equation (47).

The cumulative sum of 6ht is then computed, resulting in another vector of

length 2N_ that represents a complex random walk process. The indices of

this vector are reversed, so that random-walk begins with the last (2Nth)

element and move_ to earlier times. This vector is called w. Then, the

output field Ct is computed for ea_:h of the N time increments t by summing

the M -_- 1 pt,rtial waves who,¢e complex phrases are given by the values of

w. Thus, the first sample of C¢ is computed by starting at the middle of

the veer:or w (i.e., w_,'-l), _md u.,_ing the previous M wdues. The complex

phase of the first partial wave at time increment t is given by wt+._-t -

wt+(,v-2, and the last part:ia_ w_ve has complex 1__ase wt÷.v-_ - w_+,v- l-!._f+l).

Then, the magnitude-_uared sad pha_e of Ct are computed. The magnitude-

squared of Ct is proportional r,o the intensity of the output field at time t.

The probability distribution ( histograzn ) of the intensity is also computed.

Finally, a lianning {raised-cosine) windowing function is applied to the time

series Ct and a complex fast-Fourier-transform (FFT) is performed on this

time se2:ies. The magnitude squared of the; FFT is ti_e computed power

spectrum of the output field.
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responding frequency responses Fh(f) and F8(f), where f is the Fourier frequency.

Both impulse responses represent decaying exponentials, leading to Lorentzian fre-

quency responses. The frequency response of the cavity to the rnultiplicative noise

process is

[ 2 . Hoa 1 (2.40)
r,(/) =

and the response to the input field fluctuations is

! + i2"-_- (2.4 l)

where _ = I'/_" is the rolloff frequency of the, Lorentzian re.spol_._e, and the Fourier

frequency f is the off'set in llz from 'the optica] frequency _ ....

The power specl,rurn of the output field fluctuations is comprised of two terms

due' to the multiplicative and input fluctuations, The carrier al the cavity resonance

frequency a.,., _s shifted to DC due to the dis.':rele-time analysis, and has amplitude

(..t21101¢ l "_
Sc(O) = \_-E_,_/ (2.,'t2)

Thi_ is e,:tuivalerlf_ to the output power at th(' peak of the rescman! amplifier _raiJ_-

mis;sion zLs derived irreviously itl equation (2.5).

'lhc noi'_e processe,_ Sht and ,6R, give rise' to complex-valued terms in the out-

put field It is aa;sumed that the noise processes 6ht and bl"l, ate uncorrelated, so

the power spe_:tra due to each process may be added. The term dtw Io mu]tiplica-

river noise is the produ¢:t o[ the multiplicative noise complex power :_pectral density

S^(f) and lhe magnit_de-squared of the frequency respoIl_e F_,(f). Similarly, the

contributior, due to th,. irqmt i.fise is the product of the' illptll field noise complex
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power spectral density SR(f) and the magnitude-squared of the frequetlcy response

._(f). Therefore, the total output field noise power spectrum due t.o both input

field fluctuations and multiplicative gain and pham fluctuations is:

Sc(Y) : j_'_(/)l 2 SR(f) Jr 1Fh(f)l _ Sh(Y) (2.43)

SubstiU.ting equations (2.40) and (2.41) for the frequency responses t"h{f) and

F_(f), and using the approximation when Ko _ I that [' = len(Ko)l _ I K_.

yields the total output field power spectrum:

So(f) = -_ ,,R
14 z2-_ SMf) +

12

, )(|-h'(,) 2
2- _ '-q_(./') ' ,'2,.I,1)

This is the gen_ral e×pression for the outp)l(, field fluctuation power sp(_c)rurr) (>f a

resona)tt a.mplifier including input field noise and multiplicat.ive r,<)ise.

Consider now (he tiI._t term of this expres_ion due to the inpu) noise _.R. ]:ol

low gaiu _nd/or low-level multi[)lica/ive noise, the sigTla]-t()-J_oi_e latio [ox Fourier

frequencies less than _ will be the stone as lhe input1 sig_al-to-noise ratio. Physically.

this implio_ |hal life uutput field phase and a_tplitude exactly [ollo_ lh(, i_)put field

pha:_" and aH)ptitude fluctuations for flu('l uation rate,; less ( har_ ) he (:avh _ bandwi4th

_.,_, which is intuitively ex))ected. For ftuctu_dion t'M(.)s faster than _, th(:' int>u_ field

fluctuations are filtered by the cavity, _r)<l so are rolled off as 1/.[ _. ,,\_ )h(, ,)ut gai)_

A'o is i_creased, the c_vity cor_)er frequency a.., decreases. _n(l the int(:grated (,)).pul

noise power due to (he i)_))ut fluctuation_ decreases, irnplying a decrea_('4 spectral

widlh of the olll.[)_ll fiel<l. 'the resonan( a))_I)lihet therefore produce_ ;_ _)a))t_wb,_nd
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outputsignal of increasing spectral purity from a broadband noise input as tile, net

round-trip gain. I(o is increased. This is the expected b,*.havior of a resonant amplifier

as obtained from the standard analysis leading to equation (2.5), and is the basis of

the linear model of the laser as a noise-driven resonant amplifier, to which we will

return later.

Now consider the second term of equation (2.44) . This term due to multiplicative

Imise i:s new, arid not. obtained from the standard analysis of the resonant amplifier.

The multiplicative noise term is multiplied by the factor 1/(1 - K_,) _"compared to

the |ir,_t 1.errn due to the input fie.hi fluctuations. It is seen that. its the nel gairl

No is incrcascd, given fixed levels of input fluctuations Sn(f) and rr, ultiplicativc

fluctuations &.if). eventually the output field power spectrum Sc(f) will become

dominated by the multiplica!iv,, noise term. After t]d_, happens, t.he signal-to-noise

ratio for ]3buricr frequencies less than ,z, will decreasc with further increases in the

rlet gain.

Again. making use of the fact t],at for A': _ 1. I" i_ntA'_)] ._ (1--1(o), the roll-

off" frequency may be: approximated a_ -,,_ _ (1 - K..)/r. Making thi.. suI,_titul i¢,l_

in the .'_econd term of equatioti (2.,1 t) yields

•q'c'(f) Is._-I ==
i z: Ei /

(, (a:jy ,%df.I +
I -+ ,._ (1 - Ko) "_+ (2r/r)_

In tile limit a._ A',. -_ 1. the corner frequency ,.', --, 0. arid thc second term due. l_,

mullipli(:ative noise overwlwlnJ,, thv first term 'l'he outpu! p,aw,,r spe¢llm,J then

becomes
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fluctuation,_ and increasing linewidth make the large-angle regime something

to be avoided, so that a prediction of the onset of the large a_lgle regime is

sufficient for most applications.

By the Wiener-Khinehin Theorem. the pow_:r spectrum of a stationary

noise proce,_ is tile Fourier transform of it,s auto-correlation function [9]. For

the case of small-angle multiplicative pha._e noise, the amplitude fluctuations

of the output field are small c_rnpared to the phase fluctuations, so the field

auto-correlation function is tier.ermined primarily by the phase fluctuations.

In the la,rgE_angle regime, large amplitude and pha_ fiuctu.a_ions occur, as

seen in the previous chapter. In this regime, the fieht auto-correlation func-

tion and liJ_ewid_h are der_ermined primarily by the amplitude fluctuations.

First.. the amount of linewidth enhancement is calculated in tilt: small-

angle regime from the power spectral density of ph,_se flut:tuations obtained

from Ihe small-angle analysis. The small-angh_ fluctuations are found to lead

:o an output-power-independent Lorentzian power spectrum for the resonant

amplifier. The power :,pectrum in the large-angle regime broadens with in-

creasing net g_un as the numerical results of the last chapter illustrated. The

on,;et of t);(: larg(_-angle regime is derived from the he', roand-trip gain and

the, multiplk:aliw, t_ois_ v_riance.

B-t5
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3 Multiplicative noise in laser linewidth

3.1 Analysis of effect of small-angle multiplica-

tive noise on semiconductor resonant amplifier

linewidth

As discu.,_d in the previous chapter, the multiplicative phase fluctuations

in a semiconductor laser gain medhun are larger than the gain fiuct,uations

by the factor _3. So, in the small-angle regime, the amplitude fluctuations

of the field are small compaxed to the phase fluctuations. This iJ Illustrated

graphically in the complex platte in Figure 4a of the previous chapter. From

the numerical simulation r(_ults at the onset of the large-angle regime, it is

seen that the ph&_e fluctuations ate latger than the arapli_ude fluctuations

of the field. This means that the multtplicative noise contribution to the

output power spectrum So(f} is primarily pha_e noise for a semiconductor

laser amplifier in the small-angle regime.

The output fieldpower spectrum is the Fourier transform of the field

s.uto-correlationfunction.Followingthe development of Petermann [10],the

output ficldpower spectrum may be derivedinterms r-¢the frequencyfluctu-

ationsofthe fieldwhen the amplitude fluctuationsare negligible.Inthiscase,

the fieldautocortelati.onfunctiontony be obtained interms of the frequency

fluctuationsofr,he output field[10](See Appendix fordetailedderivation):

(C(t)C°(t - T)) = {P)e(_(¢')T)e(-½(A*_)) (48)

where P isthe average output intensity,(_) isthe mean frequency offset

from the mode frequency_, and the mean .._luateph_e fluctuation(£t__)

isrelatedto the power spectrum of the frequency fluctuationsS_(/) as

s--_



sin2(_fT)
(Ad,_) = T 2 f__ S_,(f) "_',_')T dr.

The power density spectrum of the field is then obtained as

(49)

Wc(_a) = (50)

The,_ expressions reJ.ating the power density spectrum of th_ field to the

frequency fluctuation power spectrum are valid as long as tile the pha,_e

fluctuations exhibit a. Oau:ssian probability distribution, l'he derivation of

these results is detailed in the Appendix.

When the multiplicative noise contribution to the output power spec-

trum Sc,(]) (derived in the previous chapter) is predominantly phase noise.

the power spectrum of instantaneous frequency fluctuations is related to the

power ,_pectrum of phase fluct.uatior_s a.s [18]

Sc,,,(f) =/_.S'c'(f). (51)

Substituting the pre_dous result from the small-_mgle aualysi._ for the power

spectrum of output phase fluctuations, the power spe,:trum of the output

frequency fluctuations fl_r net gain Ko approaching unity tnay be writtert

4
St.(f) == f2

The factors of f2 cancel, lcawng

(52)

1
(53)
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"£hc frequency fluctuation power spectrnm Lhus has the same fi,rm as the

power spectrum of mult,iplicativc fluct.uations Sh(f).

Consider the ,_pecial case when t,l_e power spectrum of multiplicative fl,.w-

tuations ,_a(f) is white, Equation (53) then implies that the power spectrum

of ontput frequet, cy fluctuations, Sc,v(f), is also white. In this case, the

autoeorrelation fimction of the field amplitude is (£ee Appendix)

(C(t)C'(t- T)_, = <'P)(_c":¢"rte'::'.'-a[:, . . (541

where t_. = 2,,'Sc.(0). "[he Fcn]r_er transform of this expression yiel4s a

Lorent zia,n-,;hawd spect r_Jm:

_rb (_,) = 2t'(P) (55)

which is centered around the optical frequency ";m + (cb), and has _pect, ral

width

]. Sc,,.(O) t
6v!=_t =. ,';rt--_.=- 2--,_"--= (_,)3r-'-'_ S,(O),

In the small-angle regime, the total ]inewidth ha_ the flmctJonal form:

(56)

_vt,ot = _v + _vl_,,u (57)

where the first term on the right is the [inewidth obr_ait_f_d from the stand,trd

analy,,;is withou.t [m_ltip]icative noise [4].

[n the standard .'_naly,ds of 1he resonant amplifier without jmdtiplicative

m)ise [41 discu,_sect in the previous chapter, th+' linewidth is give by:

B-4 8



For K_ _: 1, tkis may be writ.ten

1 - ;,_m6'_ I

plp,_G_ rr"

flu _ ---

Some other usef'fi relati<m.,,hips are:

2F r ,,,_. ( 1 -- K,, iJc

2_ r _rr rr 2rr nt

The tonfi linewidth of the res<,nant amplifer can finally be expressed in

terms ot tke net gain Ko ns the ._lllll of the standard and multiplicative

contributions

_vl,_, - {1 - Ko_ -+.......h;_ ,¢,,(0_ ;6 [}
:r (2,.:,)'Jr_ " :

when K_ --.: 1. T'he first term from zl-te standard analysis d,:,cre_es with

increasing 1,et gaJ.n Ko, whereas the second term due to multJplicative ,_oise

_s appro_mhes a constant as K,, _ 1.

A noise source that b._us .: white power spectrum up to infiwto fr+'quert<3'

ha:. a deha-functi.on auto-correlation funct-on, which is a use[u| mathemati-

cal n:_.M, but, is not phy_;icalIy realistic A mot,: rcalisti,:, model f,,r ,, :l,_ise

pro_,e_s ha.s art expcmenti,_l time-cor,.,llation prop_,rtiont_! to _:-_", w_th (_r-

relation con,..nt ,_, The Fourier transfbrm of an exponer_tiallv (.,_rrvlat+.d

rmts_ s, mr<'+_yields a. L,_rentzian p<,wer spectral den:dry, whic}, is whil_ _p t,,

;t l:'<,,lrier flo¢pwrcy of approxim,_re[y f = ,_, ar_,'l _t,'r_ roll:, <,It"+_s l./[2 fl,r

hiKll_q- ft'eq_encies. Then. tvr :';actwal pt:rpc,¢(,,: a wh'+:e Iloi,_e 5,)111"<("_ 11;it",'
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be modeled _ hsving s a larger than all Fourier frequencies of interest. In

practice, the noise may be considered to be white if a is at least u large

as the cavitymode spacing f_.,equation (56) may be used to estimate the

l_newidth.

When a issmall, then the approximation of equation (56) i8no longer

valid,and.the lineshapeofthe fieldpower spectrum willnot necessarilybe

LorentziLn. The lineshapemust then be computed from the Fouriertrans-

form of the auto-correlationfunctionol the electricfield.The electricfield

auto-correlationfunction must be firstbe derivedinterms of the frequency

fluctuationpower spectrum, as isdone inreference{10].

3.2 Onset of the large-angle regime

From the numerical analysisof the previouschapter,itisseen that when the

phase ofthe laterpartialwaves exceedsthe smaU-angle regime of0.1 radians,

the output amplitude and ph&,m fluctuations_ncrea_ dramatically,(Figures

2 to ).6, previolm chapter).In thisregime.,the linewidthof the resonant

amplifiercan no longerdetemined from the phase fluctuationsofthe output

field,a_ irtthe small-angleregime. As illustratedin Figures8_e, the power

spectrum of the electricfieldbecomes progressivelynoisieras the net gain is

increased,corresponding to increasedlh_ewidth.

The Isxgeamplitude and phase fluctustion_mLke thisregime ofoperation

undesirable,so avordingthe on_t ofthlsregime isol_greatpracticalinterest.

From the preceedin_;numerical analysis,the on_et of the large amplitude

fluctuations_ust begins to occur for net gain of Ko - 0.9 and when the
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mtdtiplicattvenoisestandarddev:.atioais a_ = 0.1 radians, as illustrated in

Figures 4a and 5a. For this value _¢ net gain, the number of partial waves

to aclxieveI percent convergem_ of the output partialwave summation is

computed to _ approximately 45. So, the va:ianceofthe phase forthe last

(i.e.,Mt;h} partial_ve at the onsetof the largeangle regime is

v_'M'vh _ v_ (0.1) _ traclian. (62)

So, to avoidrebrc_sdeningofthe linewidth,the net gain should be kept below

the v'dduethat causes the standard deviation of the Mth partialwave to

exceed the 0.1 r_tdi_ms,i.e.,within the limitsof the srn_l-aJaglemodel, as

dL*,cussedin the lastchapter.

3.3 Application of multlpllcatlve noise model to laser

linewidth

In this,_ct;iort,the resultsof the small _mgle _malysisfor the effectof mul-

tiplicativenoise in _tresonant amplifierwill.be.appliedto a linearmodel of

a lu,._rto derive an anal_ic expressionfor the linewidth. The lasermay

be consideredto be a resoaant amplifierdrivenby an equivalentinput noiJe

sourcecorresponding to the spontaneous emission inthe activemedium [19],

[20].In thismodel, the pre.,_nceof the constant amplitude spontaneous

emission noise input fieldcauses the net Tound-tripg_in to saturate at a

value slightlylessthan unity,resultingin a finitelinew_dthfor the resonant

smplifier.The ratioof the output intensityto the input noise t'ntensitydue

to spontaneous emissiondetermines the net round-tripgain. The wlde-b_nd

1-61
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sponr.aneous emission noise is amplified within the narrow bandpass of the

reso:uant. _mplifier, yielding the laser output. Thus. for high gain. the laser

output fiekt may be viewed as a wave of constant amplitude and frequency, on

whic.h _mall statistic_d an_l_litude and phase fluctuatic)ns due to the sponta-

neously emit.ted photons are superimposed. The modified Schawlow-Tmvnes

model [21} takes into account the damping effec:t c)f the _ar.urated gain above

threshold on the amplitude fl,.ictual ions. which results in _t fax.t_)r of two de-

crease i.n the linewidth above t.hr,:shold. Although the linear l_ser model does

not explicir.l'¢ include damping of the amplitude fluctuations, its simplicity

makes it (_asy to see the, b_ic. physics responsible, for the linewidr.la and the

r(_sults fol' the mul.tiplicotive nois_, are easily obtained.

In both the original and the modified Sc-hawlc,w-Townes mc)dels, the

linewidth at a given output power level is seen to arise from the addztwe

noise source of the spontaneously emitted photons which add random am-

plitude and phase components t() t}le output field. The power output of

the I_er increases a,,_ the _aturation level of the gain medi,,m (i.e., pump-

ing) is in('re_ed, duc to in(_r_ased stimulated emission. However, since the

sp(mt_tneous emis:;ion Lervel. is proportional to the' g_i_. which is essentially

,mi{y above threshold, so it remains clamped at its saturat_,d threshold value.

Thus. the additive random phase ,:on:ribuT.iort of the ,pontaneous photons

bc(.:()m,_s ]es,_ significant a,_ the power increases, re:,ulting in an increasing

signal-_.o-n()ise ratio .and dccre_,_,ing linewidth. Thus, by the the .qchawlow-

Towner._ model, it is predicted that r_qe linewidth of a l,_er car, her made

arbitrc_rily sm_dl by operating, the las,'r at an ._rl:,itrarily high optwal power

l,,v_.i. We now derive the liu,,_tr l_._er line_'idth m,)dcl, iuch_,liug the effect of
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mnltiplicative phase fluctuations.

FolkJwing the developmmlt of Si_gman [4i. the output power of the laser

P is related to the spontan,_us emission input noi.se power P,; _

1 - RG_ = 2T:_ (63)

where R is the power reflection coefficient of the cavity mirrors, so that

R = p2, T = ff_ = 1 -- R is the power trar:smission coefficient, and Gp is the

power gain per round trip. The qua_tit..v 1 -RG_, is defined as the "sat|:ration

amplificat ion" of the resonant amplifier. The spontaneous emi_ion power per

cavity mode can be written

C N2 ,P,_ :-- _-hv nl N2 --- ,\'1 (ap -- 1) (64)

where h is Planck's constant, u is the frequemy ¢,f the light, c is the speed

of light in vacuum, n is the average value of the refractive index, l is the

lengt_h of the cavity, a_ld N:_ and N1 are the population of the upper and

lower a_omic levels. For h_w-loss mirrors, R _ I, and above lo-sing threshold

_he round-trip gain RG_ _ l, so (Gp - 1) _ (1 - R), Now, substituting ti:is

and equation. (6.i) into equation (63), and a_suming lossle_s mirrors, so that

T = 1 - R. obtains

1- RG. = hL, _. ,'_'_
P n! ._,'_ - ,_,'¢(1 -- t0 _ (65)

From the development ,-d _;he previous se(tic,n, tl_e linewidth of a resonator.

amplifier with _,,aizl is given by equation (61)
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-avl,o,= (1 - Ko) 1+ &(0). (66)
_rr (2rr)'_r=

The round-trip power gain RGp is approximately 1, as is Ko, so we may

approximate 1 -RGp ._ 1 - Ko. Making the_e substitutions for the saiturated

gain of the laser into the last expres._ion then yields

= 2,'r..... + She(0)
6v 2rrnl ] P N'a - N_ (2rr)ara

l sh.(o)= (giv:)22_ P : 2 - • ", + (2rr) a'r2 "

for the linewidth as a hmction of the output power, where 6v,: is defined as the

"cold-cavity" [inewidth, or the Jim;width of the cavity wHh the gain medium

removed. ]'he first term of this expression is equivalent to .the original for-

mula derived by Schawlow and Tr,wnes for the ]inewidth of the ];tser. which

is ¢:orreet up to threshold, and displays the familiar 1/P dependence. Above

threshold, this term is reduced by a factor of two due to the d_m_ping of the

amplitude fluctuations by the saturated gain [21] The second term repre-

sents the multiplicative phase, noise of the laser, and is seen to be independent

of the output power. This equation predicts that the laser ]inewidth should

initially decrease linearly with increasing output power, but will finally reach

a minimum vtdue propor_.ional to the multipli('_tive Imise strength. If the

gain i,, increased yet further, th,_ linewidth begin to "rebroaden" at the o_lset

of the large-angle regime. A minimum linewidth and [inewidth rebroadening

is typically observe_l in single-frequency ]a_ser diodes at high power levels.

correspondirtg to high net round-trip gain. Tl_is modal h_ the same power-
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independent character as the linewidth derived by Welford and Mooradian

i11] using the phenomenological expression of equation (2). But the formal-

ism used to derive it also reveals that same mechanism carl be responsible

for both a power-independent linewidth and linewidth rebroadening, as is

typically observed in single-mode _miconduet.or lasers.

It is well-known that _miconductor lasers exhibit a power-independent

linewidth deviation from the modified Schawlow-Townes formula [11], [22].

As an application of this model, the minimum linewidth of a _;ypieal single-

mode senaiconductor laser will be estimated due u) the effects of electron den-

sit, y fluctuations as derived in the next chapter. Consider a single-mode GaAs

:,emiconduc_:or laser amplifier of length l = 250#rn, which implies ronnd-trip

time r _ 5 pieos, eeonds. A,3sume multiplicat.ive phase fluctuations due to

electron density fluctuations, as calculated in the next chapter, at a level of

Sh,_(O) = 10 -:s rad_/Hz for a carrier density a_: threshold of 10 Is cm -3. Then

from equation (67), the minimum linewidth h)r the laser is calculated to be

].20 Hz. This is 30 times les.,; than the lowest reported linewidth of 3.6 kHz

for a ,¢insde-mode la_er diode. In other semiconductor lasers, t.he minimum

observed iinewidth is 2 to 4 orders of magnitude larger. Thi_ estimate of the

minimum linewidth imphes noise mechanisms other than electron-density

fluctuations may be dominant in the lasers tested, but that the lowest re-

ported value to date i:, not far from the minimum due to electron density

fluctuations.

Various m_'chanisms have been advam:ed to explain the origin of the

power-independcm lin,:.width _;ld linewidth rebroade.ning_ including elec-

tron number-den,Air fl, lct_latior_S 12.%],_pat, ial hole burning [6]. and spatially-

B-55

-- III



dependent tcrnperature and carrier fluctuations '.24]. These or other mech-

anisms, such as injection-current fluctuations, may be operative in various

combinations in any partimJlar laser. Whatever the source, muhb_iicative

pha_.e and gain fluctuations in the active medium will cause a minimum

linewidth for the output field emission spectrum due to the fact that the ac-

tive medium exper:iences thermodynamk' fluctuations that alter the refract ire

index [12]. Multit)licat, ive optical phase fluctuations in the active medium

due to temperature and density fluctuations arise from the same consid-

erations responsible for Johnson noise in electronic components. Therefore,

rnutt_phcattve noise represenr,s a fundamental limit to the mininmm lino.width

achievable in a laser. When (hi,,, limit is reached, further increases in gain.

or dc_:reases in cavity lo.'_c,_, will not afford decreased linewidth. In fact. the

linewidth is predicted to rebr(,aden if the net gain is increased past the point

that the large-angi.e regime is entered. Also, it is not, ed that the total effect

of independeht multiplicativc noise sources is diminished a._ more sources are

_dd(,(l in parallel. This means tha.t the effects c,f multiplieative noise will

be more pronounced in stru<.tures with small transv(,rse dhnensions, such as

s(,miconductor lasers and optical fibers, as compared to bulk ¢,ptica[ systems.

3.4 Conclusion

An expre:_sion relining Q_(' effect of _he muhil)licative fluctuations to the

linewidth of a r(._,,_nt amplifier was d,'rived using the resuJts of _he previ-

ous _mall-a_ll_le analysis. 1-he arrm,mt (,[ linewidth cnhancmaem is cal(ulated

m _.t,_' ...mall-anl;le rel._irr,,: (r<,m _he power spectra] de)L:.ilv o[' phase fluctua-
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tions obtained from the small-angle analysis. The small-angle fluctu_ttions

are found to lead to an output-power-indepP.ndent Lorentzian power spec-

trum for the resonant amplifier. The power spectrum in the large-angle

rcgime broadens with incrca_ing net gain as the numerical results of the last

chapter illustrated. The onset of _he large-angle regime is derived frorn the

ner_ round-trip gain and the multiplicative noise variance. For the cm_e of

multiplicative phase noise, it is shown that this effect produces a minimum

lmewidlh of the resonant, amp]ifier, and qu_ditativcly explains the phenomena

of _h(; power-indenpendent linewidth and lincwidth rebroadening in single-

frequency semiconductor lasers.
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._¢ISglON

OF

R OA_IE LABORA TORY

Mlselon. The mission of Rome laboratory is to advance the science and
technologies of command, control, communicat_ns and intelligence and to
transition them into systems to meat customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportabifity:

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technic_ "npatence include: Surveillance,
Communications, Comman,- ,J_d Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photontc8 and Reliability Sciences.
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